100-184 Controller Manual

Revision Date: Sep 04, 2019

$$
\begin{array}{cc}
\text { ECD } & \begin{array}{c}
\text { System } \\
\text { Manual }
\end{array}
\end{array}
$$

Operation Guide

This manual covers all versions of 100-184 hardware and software. Some features and operative descriptions mentioned in this manual may differ or not be available on earlier 100-184 versions

© Electronic Circuit Designs Pty. Ltd.
Factory 11/30 Perry Street • Matraville • NSW•Australia • 2036
Phone 61293166909 • Fax 61293166797
Email sales@ecd.com.au Web www.ecd.com.au

Table of Contents

Table of Contents. i
Section 1: Safety Regulations \& Introduction 4
1.2.1 Following operating instructions. 4
1.2.2 Obligations of operator. 4
1.2.3 Obligations of personnel 4
1.2.4 Hazards associated with the equipment 5
1.2.5 Warranty and liability 5
1.2.6 Organizational measures. 5
1.2.7 Protective equipment 6
1.2.8 Informal safety measures. 6
1.2.9 Training of personnel. 6
1.2.10 Machine controls. 6
1.2.11 Safety measures during normal operation 6
1.2.12 Hazards caused by electric power. 6
1.2.13 Hazards caused by hydraulic power 7
1.2.14 Special danger areas (examples). 7
1.2.15 Introduction 7
1.2.16 Controller Installation Environmental Requirements 8
Section 2: EEProm Settings 9
EEProm Version 5.32 (15 stop) Summary 10
EEProm Definitions (Full description) 13
ADO - Advanced Door Opening setup 13
ANS - Anti Nuisance setup 13
BCC Bottom Car Call setup 13
BOT - Bottom floor setup 13
BST - Brake Switch Time 13
CCM - Car Call Mask setup 14
CC1 - CCM extended setup 14
CNT - CNT Input setup 14
COD - Parameter lockout function. 15
DCM - Down Call Mask setup. 15
DC1 - DCM extended setup 15
DLI - Door Limit Invert setup 15
DLM - Door Limit setup 16
DRV - Drive type setup 16
DT - Door Time close setup. 16
DTC - Door Time Car call close setup 16
DTH - Door Time Hall call close setup 17
DTL - Door Time Lobby call close setup 17
DTR - Door Time Recall setup 17
DTZ - Door Time Zone close setup 17
EP - Emergency Power type. 17
EQK. 17
FD1 - Front Doors setup, Levels 1-8. 17
FD2 - Front Doors setup, Levels 9-15 18
FS - Fire Service type 18
HFA - Hall Fire Alternate floor setup 18
HA1 - HFA extended setup. 18
HFS - Hall Fire Service return floor setup 18
HF1 - HFS extended setup. 18
HR - Hospital / Hall Recall 19
HR1 - Hospital / Hall Recall extended setup 19
IND - Independent Service type 19
LCK - Parameter lockout function 19
LOB - Lobby floor setup 19
LO1 - Lobby floor extended setup 19
L.\# - Lift Number setup 20
MOD - MODE Inputs setup 20
MSL - Magnet Slowing type 20
NR - Door Nudging setup 20
PI - Position Indication setup20
PRK - Park/Zone with doors open 20
PRV - Proving required setup 20
RD1 - Rear Doors setup, Levels 1-8 21
RD2 - Rear Doors setup, Levels 9-1521
RLV - Re-leveling setup21
RPT - Run Protection Timer setup21
RTM - Run Time short floor run setup21
SD1 - Selective rear doors setup, Levels 1-822
SD2 - Selective rear doors setup, Levels 9-15 22
SDX - Star Delta Exchange Time setup. 22
SDX - VF Drive setting 06,07,08 brake drop time 22
SFR - Short Floor Run setup. 22
Spares.23
StF - Start Fast 23
StM - Start Medium 23
SIF - Slow Fast 23
SIM - Slow Medium 23
ST2 - Star Delta Changeover Time setup 23
ST2 - VF Drive setting 06,07,08 end run time 23
TCC - Top Car Call setup 24
TC1 - TCC extended setup 24
TOP - Top floor setup. 24
UCM - Up Call Mask setup 24
UC1 - UCM extended setup. 25
XTM - Extend run time short floor run. 25
ZON - Zoning/Parking floor setup. 25
ZO1-ZON extended setup. 26
ZTM - Zoning time setup 26
\#.L - Number of Lifts setup 26
Section 3. Group 27
Group Connections and Communication.27
Group Checks 28
Group / Duplex faults 28
Section 4. Inputs - Outputs 29
BKSW - Brake Switch Input 29
BRK - Brake relay output 29
BSL - Bottom SLowing input 29
CBS - Hall Button Stop output 29
CC - Car Call inputs/Darlington outputs 29
CFS - Car Fire Service input 30
CFSS - Car Fire Service Start input 30
DC - Door Close Relay output 30
DCB - Door Close Button input 30
DDN - Direction Down output 30
DDO - Door Open Disable input / Toggle Switch 30
DF - Down Fast relay output 31
DFC - Door Fully Closed input 31
DFO - Door Fully Open input. 32
DHC - Down Hall Call inputs/Darlington outputs 34
DN - Down Relay output 34
DO - Door Open Relay output 34
DOB - Door Open Button input 35
DS - Down Slow Relay output 35
DUP - Direction Up output 35
DZ - Door Zone input 35
DZR - Rear Door Zone output 35
EDP - Electronic Door Protection input 35
EQK - Earthquake Detection input. (Siesmic or Counterweight displacement switch) 35
HFA - Hall Fire Alternate input 36
HCB - Hall Call Bypass Input 36
HFL - Hall Fire Light output 36
HFM Hall Fire Machine room/Hoist way input 36
HFR - Hall Fire Reset input 36
HFS - Hall Fire Service input 36
HFV - Hall Fire Visual signal output 37
HV2 - High Voltage input 37
IDN - Inspection Down input 37
IND - Independent Service input 37
INSP - Inspection Control input 37
IRO - Inspection Relay Output 37
IUP - Inspection Up input 37
LEV - Leveling Relay output 37
LR - Lock Relay input. 38
LR - Lock Relay output 38
LRX - Aux LR input. 38
M3-Door Locks input 38
MSD - Magnetic Switch Down input 38
MSU - Magnetic Switch Up input. 38
NDG - Nudging Buzzer output 39
NR - Nudging Relay output. 39
OS - Out of Service output 39
PI - Position output39
PRK - Parking Function input 39
PRV - Proving Circuit input40
PULSE - Pulse Counting Input 40
SAF - Safety Circuit input 40
SIn 1 - Spare Input 1 40
SIn2 - HR Input 40
SIn3-? 40
SIn4-?? 40
SO1 - Spare Output 1 40
SP - Emergency Power input 40
SP1 - Multi Purpose output 1 41
SP2 - Multi Purpose output 241
SP3 - Multi Purpose output 3 41
SP4 - Multi Purpose output 4 41
SX- Serial communication input41
SX+ Serial communication input 41
TSL - Top Slowing input. 41
UD - Up/Dn Relay output41
UF - Up Fast Relay output 41
UHC - Up Hall Call inputs / outputs 41
UP - Up Relay output. 42
US - Up Slow Relay output. 42
Section 5. Liquid Crystal Display. 43
LCD Status Line. 43
LCD Position \& Direction 43
LCD Lift Modes 43
LCD Lift Status 44
LCD Door Modes. 44
LCD Control Buttons 44
LCD Display Options. 45
Section 6. Motion 46
Motion Control Outputs 46
Drive settings and their output status. 46
Counting Method "00" - Magnet Counting.54
Counting Method " 01 " - Pulse Counting. 56
Counting Method "02" - Pulse Counting. 64
Counting Method " 03 " - Pulse Counting no update. 66
Section 7: Faults - Fault finding. 67
Upgrade Controller software. 67
Group/Duplex Faults 67
Leveling inhibit. LEV 67
Run protection timer. RPT. 67
Lift won't re-level with doors open 67
On board fuse blows 68
Testing 24Vdc 68
Doors do not open 68
Doors close on park 68
Doors don't open at terminal floors 68
Lift gets out of step 68
Lift does not answer car calls 68
Lift does not answer hall calls 68
Lift misses hall calls. 69
Re-leveling won't operate 69
Red3 LED is not blinking. 69
Processor errors/Lockup: 69
Section 8. Upgrades, Changes \& Technical Information 70
Controller ID 71
Terminal Screw Torque Settings. 72

Section 1: Safety Regulations \& Introduction

Section 1.1 Safety Regulations

Elevator controllers and other electrical components can cause serious harm or death if installation guides are not met. It is the responsibility of the installer of our equipment to ensure that once installed, the equipment does not pose any threat, danger or hazard.

Installation of this equipment shall be done in accordance with AS1735 for Australia and with all applicable local codes.

As per AS 60038-2012, Table 1, nominal supply voltage shall be $230(4$ wire) $/ 400$ (3 wire). Highest supply voltage shall be 253/440. Lowest supply voltage shall be 216/376.

Section 1.2 Obligations and Liability

1.2.1 Following operating instructions.

- In order to ensure safe handling and problem free operation of this equipment, it is absolutely essential for the relevant personal to be fully acquainted with the relevant safety regulations.
- These operating instructions contain the most important information for operating the machine correctly and safely.
- These operating instructions, in particular the safety regulations, must be observed by all those persons who work on the equipment.
- Furthermore, all locally applicable rules and regulations relating to accident prevention and installation must be observed.

1.2.2 Obligations of operator.

The operator undertakes to allow only those persons to work on the equipment who

- Are fully acquainted with the basic regulations relating to safety in the workplace and accident prevention and to have been trained in handling the equipment.
- Have read the safety regulations and the warning notices contained in these the operating instructions.
- Regular checks are conducted to ensure that personnel perform their duties with safety considerations foremost in their minds.

1.2.3 Obligations of personnel.

All personnel charged with working on the machine undertake prior to starting work to

- Observe the basic regulations relating to safety in the workplace and accident prevention.
- Read the operating instructions, in particular the safety regulations, and confirm by way of their signature that they have understood them.

SAFETY REGULATIONS \& INTRODUCTION

1.2.4 Hazards associated with the equipment.

The equipment is built with state-of-the-art technology and recognized safety regulations. Nevertheless, use of the equipment can result in dangers to life and limb for the installer, user or a third party and in impairments to the equipment or to other material property. The equipment must only be used

- For its intended purpose.
- In perfect condition in terms of safety requirements.

Operate the equipment in technically perfect condition and for its intended use only while bearing in mind all safety and hazard considerations and following the operating instructions. In particular, faults which restrict safety must be rectified immediately after they have been identified and at the latest before the equipment is started up.

Compliance Testing for AS/NZS CISPR 22:2002 Class A

WARNING !

This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Compliance Testing for FCC Title 47 Part 15, Subpart B Class A

Abstract

FCC PART 15 This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: 1. This device may not cause harmful interference, and 2. This device must accept any interference received, including interference that may cause undesired operation.

1.2.5 Warranty and liability.

Our "Sales terms and conditions" apply. These terms and conditions will have been available to the purchaser at time of sale. Warranty and liability shall be limited to repairs and replacement to the equipment purchased from us. Warranty and liability claims shall not be entertained if they can be traced back to one or more of the following causes.

- Equipment not used for its intended purpose.
- Improper installation, startup, operation and maintenance of the equipment.
- Operation of the equipment with faulty safety devices or improperly installed or non-operational safety and protective equipment.
- Failure to observe the information, instructions and notices contained in the operating instructions relating to transportation, storage, installation, startup, operation, maintenance and setting up of the equipment.
- Inadequate monitoring of the equipment parts which are subject to wear.
- Improperly conducted repairs.
- Catastrophes caused by the influence of foreign bodies and force majeure.

1.2.6 Organizational measures.

- The installer and or maintainer shall provide the necessary protective equipment for the personnel
- All existing safety equipment must be checked at regular intervals.

SAFETY REGULATIONS \& INTRODUCTION

1.2.7 Protective equipment.

- At all times, prior to putting the machine into operation, all protective equipment must be correctly installed and in proper working condition.
- Protective equipment may only be removed
- after the machine has come to a complete stop and the machine has been disabled to ensure it cannot be started up again.
- if subcomponents are delivered, the operator must install the protective equipment in accordance with regulations

1.2.8 Informal safety measures.

- Keep the operating instructions and circuit diagrams permanently at the site where the equipment is installed.
- In addition to the operating instructions, the generally valid and local regulations relating to accident prevention and environmental protection must be provided and observed.
- Maintain all safety and danger notices on/next to the machine in legible condition and comply with them.
- If the equipment is sold or transferred, the operating instructions must be included with the equipment.

1.2.9 Training of personnel.

- Only personnel who have been trained and instructed are allowed to work on the machine.
- The responsibilities of the personnel must be clearly defined for the machine/controller installation, startup, operation, setting-up, maintenance and repairs.
- Personnel still in the process of being trained are only permitted to work at the machine under the supervision of an experienced person.

1.2.10 Machine controls.

- Under no circumstances carry out any program modifications to the software!
- Only properly instructed personnel are permitted to operate the controls.
- The machine must not be operated if potential electromagnetic interference sources are acting on the machine. Interference sources are e.g. welding equipment, portable phones.

12.11 Safety measures during normal operation.

- Only operate the machine when all protective equipment is fully operational.
- Prior to switching on the machine, ensure that the startup can cause no harm to personnel.
- Regularly maintain and check machine for externally identifiable damage and check that all the safety devices are operational.

1.2.12 Hazards caused by electric power.

- Ensure 0 v and +24 V are free from other voltages. High voltages may be superimposed on 0 V and +24 V lines as no reference to ground exists. See Warning 1.2.14
- Work on the electric power supply may only be carried out by a qualified electrician.
- Check the electrical equipment of the machine at regular intervals. Repair loose connections and scorched cables immediately.
- Keep the control cabinet locked at all times. Access is only permitted to authorized personnel with a key or tool.

SAFETYREGULATIONS \& INTRODUCTION

- If work has to be carried out on live parts, do this only in the presence of a second person who can switch off the master switch in an emergency.
- The machine causes electromagnetic interference sources. For this reason, do not use any sensitive equipment in its vicinity.
- For EMC reasons, the controller must not be modified.

1.2.13 Hazards caused by hydraulic power.

- Only personnel with special knowledge and experience in the field of hydraulics may work on hydraulic equipment.
- Before beginning repairs, depressurize system sections and pressure lines which are to be opened.

1.2.14 Special danger areas (examples).

- When on inspection, always ensure either of the common or direction control buttons stops the lift.
- The common button shall break the safety line and the 0 V up/down direction input.
- Never place yourself or any party in a position of danger where relying on any single safety measure.
- Automatic machines start without warning. Care must be taken at all times.

WARNING!

Always treat terminals and conductors as dangerous. High voltages may be superimposed on 0 v and 24 VDC lines as no reference to ground exists. Always meter these points to ensure correct voltage exists.

1.2.15 Introduction

The 100-184 lift controller can operate up to a 15 stop simplex or duplex, fully collective controller. The 100-184 lift controller can be grouped up to a 6 car group. The 100-184 controllers are inter-connected using 3 wire serial communication. A separate group controller is therefore, not required.

Processor

Under normal operation;

- The red Red3 LED blinks to confirm that the microprocessor is running.
- The yellow Yel3 LED comes on to confirm outputs are enabled.
- The green Grn3 LED comes on during power up and turns off during normal operation. It will also flash once when a new value has been written in to EEPROM..

When re-powering; ensure the lift is off for 10 seconds before turning back on.
On power up, a delay of approximately 2 seconds is given on start up to ensure voltages are stable prior to reading and writing outputs.

SAFETY REGULATIONS \& INTRODUCTION

1.2.16 Controller Installation Environmental Requirements

Controller cabinet must be installed in a location free from;

- Dust and dirt.
- Excessive heat and humidity. Ambient temperature should not exceed $40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}$.
- Excessive vibrations.
- Mist or water

When mounting controller cabinet, ensure it is suitably supported..

Section 2: EEProm Settings

EEProm: How to read and modify settings

This EEProm holds settings for the particular contract data including number of floors, door type and drive types.

The EEPRom holds values for various contract settings which may be altered on site. Each setting has a definition followed by its value in hex followed by its value in bit format.

To inspect the settings from the power up state, press the forward " $>$ " button located to the left below the LCD until the EEPROM setting appears.

```
01- NOR IDL ][
ECD Aust. V-5.32
```

```
01- NOR IDL ][
```

TOP: 08:00001000

To inspect the settings from the power up state, press the forward " $>$ " button located to the left below the LCD until the EEPROM setting appears.

01- NOR IDL] [
TOP:*0e:00001110

Now you can use the up " \wedge " and down " \vee "buttons to scroll through the settings. If you want to change a setting press the enter "ENT" button and a shall appear on the screen to indicate you are in edit mode.

Now use the up " \wedge " and down " \vee " buttons to change the setting. When you are at the required value press the enter "ENT" button again and the * shall disappear.

```
TOP: Oe:00001110
```


EEProm Security

A special write sequence has been added to ensure unauthorized writes to the EEProm are not made. Only operates with EEProms with this capability. These EEproms are recommended and identified by a "contract data secure" label.

EEProm Version 5.32 (15 stop) Summary

The EEProm holds values for various contract settings which may be altered on site. Each setting has a definition followed by its value in hex and then its value in bit format.

Note: Refer to EEProm Definitions (Full description) for more information.
BOT Bottom floor number (VALUE)
Setting example:- BOT 01: 00000001 (Level 1)
TOP Top floor number (VALUE)
Setting example:- TOP 0E: 00001110 (Level 15 is top floor)
BCC Bottom car call for "DN" button on the circuit board (MASK)
Setting example:- BCC 80: 10000000 (Bottom call Level 1)
TCC Top car call for "UP" button on the circuit board (MASK)
Setting example:-TCC 00: 00000000
TC1 Top car call extension. Ext. of TCC (MASK)
Setting example:-TC1 40: 01000000 (Set to Level 10)
CCM Car call mask. Floors allowed. (MASK)
Setting example:-CCM FF: 11111111 (Levels 1-8)
CC1 Car call mask extension. Ext. of CCM. Floors allowed ext. (MASK)
Setting example:-CC1 C0: 11111110 (Levels 9-15)
UCM Up call mask. Floors allowed. (MASK) Setting example:- UCM FF: 11111111 (Levels 1U-8U)
UC1 Up call mask extension. Ext. of UCM. Floors allowed ext. (MASK) Setting example:- UC1 80: 11111100 (Level 9U-14U)
DCM Down call mask. Floors allowed. (MASK) Setting example:- DCM 7F: 01111111 (Levels 2D-8D)
DC1 Down call mask extension. Ext. of DCM. Floors allowed ext. (MASK) Setting example:- DC1 C0: 11111111 (Levels 9D -15D)
LOB Lobby floor. (MASK)
Setting example:- LOB 40:01000000 (Level 2 master)
LO1 Lobby floor mask extension. Ext. of LOB (MASK) Setting example:- LOB 00: 00000000
ZON Zone floor. (MASK) Setting example:-ZON 10: 00010000 (Zone to Level 4)
ZO1 Zone floor mask extension. Ext. of ZON. (MASK)
Setting example:-ZO1 00: 00000000
ZTM Zoning time. (VALUE)
Setting example:-ZTM 06: 00000110 (= 60seconds)
HFS Hall fire service floor. (MASK)
Setting example:-HFS 80: 10000000 (Level 1)
HF1 Hall fire service floor mask extension. Ext. of HFS. (MASK)
Setting example:-HF1 00: 00000000
SFR Short Floor Run (MASK) Setting example:- SFR 9F: 10011111 (Short floor between 2\&3)
SF1 Short Floor Run mask extension. Ext. of SFR.(MASK) Setting example:- SFR CF: 00111111 (Short floor between $9 \& 10$)
L.\# Lift Number (VALUE) Setting example:- L.\# 02: 00000010 (Lift \#2)
\#.L Number of Lifts (VALUE) Setting example:- \#.L 03: 00000011 (3 Lifts in group)
MOD Mode inputs (MASK)

EEPROM SETTINGS

Setting example:- MOD 02: 00000010 (CFS input inverted)
CNT CNT inputs (MASK)
Setting example:- CNT 02: 00000010 (DOB input inverted)
HFA Hall fire alternate floor. N/A in Australia (MASK)
Setting example:- HFA 40: 01000000 (Level 2 alt. fire floor)
HA1 Hall fire alternate floor extension for floors 9-12
PRV If set to "01" requires PRV, prove input on all DRV settings
RPT Run protection timer
Setting example:-RPT 01: 00000001 (25s)
DRV Drive control type.
Setting example:-DRV 02: 00000010 (3010/2CH/S block)
ST2 Star Delta time. (VALUE)
Setting example:-ST2 08: 00001000 ($=800 \mathrm{~ms}$)
SDX Star Delta Exchange time. (VALUE)
Setting example:-SDX 01: 00000001 (= 100ms)
MSL Magnet slowing type.
Setting example:- MSL 00: 00000000 (MSU/MSD slowing) MSL 01: 00000001 (Pulse slowing)
RTM Extend run time. - If slowing is obtained less than this time, then add the value of in XTM on before dropping high speed.
Setting example:-RTM 00: 00000000 (No extended run time.)
XTM Extend run time. - If a short floor determined by RTM then add this amount of Time on before dropping high speed.
Setting example:-XTM 00: 00000000 (No extended run time.)
StF Start Fast. - Number of pulses it takes to reach fast speed.
StM Start Medium.- Number of pulses it takes to reach medium speed.
SIF Slow Fast. - Number of pulses it takes to slow from fast speed.
SIM Slow Medium.-Number of pulses it takes to slow from medium speed.
BST Brake Switch Time
Setting example:-BST 03: 00000011
--2 Spare
RLV Re-leveling. Turn re-leveling on/off.
Setting example:-RLV 00: 00000000 (No Re-level.)
RLV 01: 00000001 (Re-leveling on.)
DLM Door limit mask.
Setting example:-DLM 00: 00000000 (Single doors.)
DLM 01: 00000001 (Multi doors.)
DLM 02: 00000010 (Door cam.)
DLI Door limit invert. (MASK)
Setting example:-DLI 00: 00000000 (Limits not inverted.)
NR Nudging Relay for door nudging/Passing tone (MASK)
Setting example:-NR 00: 00000000 (Nudging off.)
ADO Advanced Door Opening.
Setting example:-ADO 00: 00000000 (Off)
DTC Door time car call. (VALUE)
Setting example:-DTC 32: 00110010 (= 5000ms, " 5 seconds")
DTH Door time hall call. (VALUE)
Setting example:-DTH 32: 00110010 (= 5000ms, " 5 seconds")
DTL Door time lobby. (VALUE)
Setting example:-DTL 32: 00110010 ($=5000 \mathrm{~ms}$, " 5 seconds")
ANS Anti Nuisance EDP. (VALUE)
Set to the number of times a car call is answered without EDP activation before calls are cancelled.
DTZ Door time zone (Zone floor). (VALUE) N/A

EEPROM SETTINGS

FD1 Front doors 1-8 mask.
Setting example:-FD1 F0: 11110000 (Front doors 1-4.)
FD2 Front doors 9-16 mask.
Setting example:-FD2 00: 00000000
RD1 Rear doors 1-8 mask.
Setting example:-RD1 08: 00001000 (Rear doors 5.)
RD2 Rear doors 9-16 mask.
Setting example:-RD2 00: 00000000
SD1 Selective rear doors 1-8 mask.
First floor of selective front/rear doors.
Setting example:-SD1 10: 00010000 (Levels 4 \& 5 selective.)
SD2 Selective rear doors 9-16 mask.
First floor of selective front/rear doors.
Setting example:-SD2 10: 00010000 (Levels 12 \& 13 selective.)
DTR Door time HR recall. (VALUE)
Setting example:-DTR 32: 00110010 ($=5000 \mathrm{~ms}$, " 5 seconds")
HR Hosp / Hall recall mask.
Setting example:-HR 40: 01000000
HR1 Hosp / Hall recall mask extension. Setting example:-HR1 40: 01000000 (Set to Level 10)
PRK Park/Zone with doors closed/open. Set to 00 - doors closed.
IND Independent service operation. Set to 00 .
FS Fire service type
Setting example:-FS 00: 00000000 (Australian fire service.)
FS 01: 00000001 (Code 17.1 U.S.A..)
EP Emergency power operation. Set to 00 .
PI Position Indication
Setting example:-PI 00: 00000000 (Decimal outputs.)
DT Door Time Close Setup (Enable "DTC/DTH Canceling Function")
Setting example:-DT 01:00000001 (DTC/DTH Canceling Activated)
LCK EEProm Lock (Unlock default 67)
COD Lock code (Unlock default 89)
EQK N/A. Do not adjust
-7 Spare

EEProm Definitions (Full description)

ADO - Advanced Door Opening setup

Sets the doors to open whilst traveling into the floor. The doors shall commence opening when the lift is within the door zone and the MSU or MSD vane pending direction.
ADO EEPROM Advanced Door Opening.
00: 00000000 "Off - Default"
01: 00000001 "On"

ANS - Anti Nuisance setup

Set to the number of times a car call is answered without EDP activation before calls are cancelled. Counter is reset to zero if EDP is activated. If a hall call is present as well as a car call, the counter will not increment.

ANS EEPROM Anti Nuisance.
00: 00000000 'Off"
03: 00000011 "On - operates after 3 car calls of no EDP in a row."
1e: 00011110 "On - operates after 30 car calls of no EDP in a row - Default"

BCC Bottom Car Call setup

BCC EEPROM Bottom car call for the "BOT" button on the circuit board (MASK)
First floor served for this lift only.
The controller shall enter a car call to this setting when the "BOT" button on the circuit board is pressed.
80: 10000000 (Level 1)
40: 01000000 (Level 2)
20: 00100000 (Level 3)
10: 00010000 (Level 4)
08: 00001000 (Level 5)
04: 00000100 (Level 6)
02: 00000010 (Level 7)
01: 00000001 (Level 8)

BOT - Bottom floor setup

BOT EEPROM Bottom number (VALUE)
Set value to lowest floor served. (01 to 07 valid values)
Lift resets to "BOT" value when BSL limit is activated.
This signal can be used when a lift in the group doesn't go all the way to the bottom.
01: 00000001 (Level 1)
02: 00000010 (Level 2)
03: 00000011 (Level 3)
04: 00000100 (Level 4)
05: 00000101 (Level 5)
06: 00000110 (Level 6)
07: 00000111 (Level 7)

BST - Brake Switch Time

To prove the brake has lifted, brake monitoring switches in conjunction with BST setting, may be used.
BST sets the time for BKSW input to be initiated, once the brake command (BRK relay pulled in) has been given.

EEPROMSETTINGS

Setting example 01-05: 01: $00000001=1 \mathrm{~s}$
(Immediate stop) 02: $00000010=2 \mathrm{~s}$
03: $00000011=3 \mathrm{~s}$
04: $00000100=4 \mathrm{~s}$
05: $00000101=5 \mathrm{~s}$
FF: $11111111=$ OFF. BKSW not monitored.
If the input is not detected within the specified time (setting 01-05) the lift shall stop immediately and display BST in LCD Lift Status.

Setting example 11-15: \quad 11: $00010001=1 \mathrm{~s}$
(stop next floor) $\quad 12: 00010010=2 \mathrm{~s}$
13: $00010011=3 \mathrm{~s}$
14: $00010100=4 \mathrm{~s}$
15: $00010101=5 \mathrm{~s}$
FF: 11111111 = OFF. BKSW not monitored.
If the input is not detected within the specified time (setting 11-15) the lift shall stop at the next available floor and display BST in LCD Lift Status. Door open button will still operate.

BST is a fatal error. Reset is only via a processor POR.
Any other setting than above will turn the brake switch monitoring OFF.
See also Input - Output, BKSW.

CCM - Car Call Mask setup

CCM EEPROM Car call mask. Floors allowed. (MASK). For this lift only.
This setting lets you define the floors which the lift can serve via car calls.
Set bits to a " 1 " car call allowed or a " 0 " for not allowed.
C0: 11000000 ($1 \mathrm{c}, 2 \mathrm{c}$)
E0: 11100000 (1c,2c,3c)
F0: 11110000 ($1 \mathrm{c}, 2 \mathrm{c}, 3 \mathrm{c}, 4 \mathrm{c}$)
F8: 11111000 ($1 \mathrm{c}, 2 \mathrm{c}, 3 \mathrm{c}, 4 \mathrm{c}, 5 \mathrm{c}$)
FC: 11111100 ($1 \mathrm{c}, 2 \mathrm{c}, 3 \mathrm{c}, 4 \mathrm{c}, 5 \mathrm{c}, 6 \mathrm{c}$)
FE: 11111110 (1c,2c,3c,4c,5c,6c,7c)
FF: 11111111 (1c,2c,3c,4c,5c,6c,7c,8c)
Note: This feature shall not to be used for security purposes, as it shall disable the car calls in Fire Service and other modes of operation.

CC1 - CCM extended setup

Extension of CCM.
80: 10000000 (9c)
C0: 11000000 ($9 \mathrm{c}, 10 \mathrm{c}$)
E0: 11100000 ($9 \mathrm{c}, 10 \mathrm{c}, 11 \mathrm{c}$)
F0: 11110000 ($9 \mathrm{c}, 10 \mathrm{c}, 11 \mathrm{c}, 12 \mathrm{c}$)
F8: 11111000 ($9 \mathrm{c}, 10 \mathrm{c}, 11 \mathrm{c}, 12 \mathrm{c}, 13 \mathrm{c}$)
FC: 11111100 ($9 \mathrm{c}, 10 \mathrm{c}, 11 \mathrm{c}, 12 \mathrm{c}, 13 \mathrm{c}, 14 \mathrm{c}$)
FE: 11111110 ($9 \mathrm{c}, 10 \mathrm{c}, 11 \mathrm{c}, 12 \mathrm{c}, 13 \mathrm{c}, 14 \mathrm{c}, 15 \mathrm{c}$)
Note: This feature shall not to be used for security purposes, as it shall disable the car calls in Fire Service and other modes of operation.

CNT - CNT Input setup

Enables the following CNT inputs to be inverted; DCB, DOB and EDP
CNT EEPROM (MASK)

EEPROM SETTINGS

00: 00000000 No inputs inverted.
01: 00000001 DCB. Door close input inverted
02: 00000010 DOB. Door open input inverted
04: 00000100 EDP. EDP input inverted
eg. 06: $00000110=$ both DOB and EDP inputs inverted.

COD - Parameter lockout function

To stop unauthorised adjustments to the EEprom parameters the COD and LCK parameters are used.
COD and LCK must both be set to default values to allow other parameters to be adjusted.
See also Eeprom setting LCK
COD default. 89: 10001001
LCK default. 67: 01100111

DCM - Down Call Mask setup

DCM EEPROM (MASK) Dn hall calls allowed for this lift only.
This setting lets you define the DOWN floors which the lift can serve via DOWN HALL CALLS
With this setting you may disable DOWN hall calls to floors not allowed.
Set bits to a " 1 " hall call allowed or a " 0 " for not allowed.
40: 01000000 (2d)
60: 01100000 (2d,3d)
70: 01110000 (2d,3d,4d)
78: 01111000 (2d,3d,4d,5d)
7C: 01111100 (2d,3d,4d,5d,6d)
7E: 01111110 (2d,3d,4d,5d,6d,7d)
7F: 01111111 (2d,3d,4d,5d,6d,7d,8d)

DC1 - DCM extended setup

Extension of DCM.
80: 10000000 (9d)
C0: 11000000 (9d,10d)
E0: 11100000 (9d,10d,11d)
F0: 11110000 (9d,10d,11d,12d)
F8: 11111000 (9d,10d,11d,12d,13d)
FC: 11111100 (9d,10d,11d,12d,13d,14d)
FE: 11111110 (9d,10d,11d,12d,13d,14d,15d)

DLI - Door Limit Invert setup

DLI is only valid when DLM is set to 00,03 or 04 . See also EEprom setting DLM.
DLI setting is used to invert the DFO and DFC inputs when normally open (n / o) door limit contacts are used.
DLI EEPROM Door limit invert. (MASK)
DLI: 00 "Limits not inverted."
DLI: 01 " Limits inverted." Any setting other than 00 shall default to inverted limits.

DLI set to 00 - Limits not inverted. Using n / c limits.

Doors fully open - DFC LED will be on. DFO LED will off
Doors fully closed - DFC LED will be off. DFO LED will on
Doors midway - DFC LED will be on. DFO LED will on
DLI set to 01 - Limits inverted. Using \mathbf{n} / o limits.
Doors fully open - DFC LED will be off. DFO LED will on
Doors fully closed - DFC LED will be on. DFO LED will off
Doors midway - DFC LED will be off. DFO LED will off

EEPROM SETTINGS

DLM - Door Limit setup

DLM setting is used to configure the DFO and DFC inputs and the DO and DC relay operation.
Generally; if you have a single door operator, set DLM to 00 .
For two door operators, set DLM to 01. (DLI setting shall be ignored).
See also EEprom setting DLI, DFC, DFO.
DLM EEPROM Door limit mask.
Setting example: DLM 00: 00000000 The door open and door close limits are wired directly to DFO and DFC inputs. These inputs may be inverted using the DLI setting.
DLM 01: 00000001 (Used for front and rear doors) The door open and door close limits are used to operate open and close relays. Normally open contacts from these relays are wired to DFO and DFC inputs (DLI setting shall be ignored)
DLM 02: 00000010 (Door cam control) DC relay output used to control Cam operation.
$\mathrm{Nb}: 2$ sec delay from DO picking up after DC has dropped. (to allow time for cam to drop and locks to break, to avoid lock "snagging"). See also Input - Output, DFC.
DLM 03: 00000011 As per DLM setting " 00 ", except DO and DC are held up
DLM 04: 00000100 (Used to hold door closed when running) As per DLM setting " 00 ", except DC relay picks up whilst running

DRV - Drive type setup

This sets the drive output type. Relay output configurations are changed to suit equipment installed.
Refer to operation section for motion outputs.
DRV...EEPROM...Drive control type.
00: 00000000 "Standard hyd. block valve. 3010EN"
01: 00000001 'DA DynaHyd valve."
02: 00000010 "Soft valve. $3010 / 2 \mathrm{CH} / \mathrm{S}$ "
03: 00000011 "VF type 1; Keb VF drive, Zetadyn VF drive"
04: 00000100 " 1,2 speed AC"
05: 00000101 "GMV 3010/S, Blain EV100", Maxton, Bucher LRV, EECO
06: 00000110 "VF type 2"
07: 00000111 "VF type 3; ABB VF drive"
08: 00001000 "Butcher VF Hydraulic drive"

DT - Door Time close setup

This setting allows the door fully open time NOT to be canceled when a car-call or door closed button (DCB) is pressed.
Setting example:
DT 00: 00000000 (De-activated, NOT allowed to cancel DTC/DTH time by pressing either DCB or any car call).
DT 01: 00000001 (Activated. ALLOW pressing a car-call or DCB to cancel DTC/DTH time).
DT 02: 00000000 (Partially de-activated, NOT allowed to cancel DTC/DTH time by pressing any car call).

DTC - Door Time Car call close setup

Sets the amount of time before the doors close for a car call whilst on normal operation.
DTC EEPROM Door time close. (VALUE)
Set value for door close time.
The time is set in 100 ms increments.
1e: $00011110=3000 \mathrm{~ms}$, " 3 seconds"
32: $00110010=5000 \mathrm{~ms}$, " 5 seconds"
37: $00110111=5500 \mathrm{~ms}$, " 5.5 seconds"
90: $10010000=14400 \mathrm{~ms}$, " 14.4 seconds"
(01 to FF valid values.)

EEPROM SETTINGS

DTH - Door Time Hall call close setup

Sets the amount of time before the doors close for a hall call whilst on normal operation.
Lobby time (DTL) overrides this setting when lift is at the lobby floor.
Recommend DTH is set equal to or greater than DTC.
DTH EEPROM Door time close. (VALUE)
Set value for door close time.
The time is set in 100 ms increments.
32: $00110010=5000 \mathrm{~ms}$, " 5 seconds"
37: $00110111=5500 \mathrm{~ms}$, " 5.5 seconds"
$90: 10010000=14400 \mathrm{~ms}$, " 14.4 seconds"
(01 to FF valid values.)

DTL - Door Time Lobby call close setup

Sets the amount of time before the doors close after a lobby call is answered when on normal operation.
DTL value overrides DTH value when answering a hall call at the lobby floor.
Recommend DTL is set equal to or greater than DTH and DTC.
DTL EEPROM Door time close. (VALUE)
Set value for door close time.
The time is set in 100 ms increments.
32: $00110010=5000 \mathrm{~ms}$, " 5 seconds"
37: $00110111=5500 \mathrm{~ms}$, " 5.5 seconds"
$90: 10010000=14400 \mathrm{~ms}$, " 14.4 seconds"
(01 to FF valid values.)

DTR - Door Time Recall setup

Sets the amount of time before the doors close after returning to HR or HR1 floor and lift not being switched to IND or CFS.
The time is set in 100 ms increments.
Eg. 32: $00110010=5000 \mathrm{~ms}$, " 5 seconds"
See also Inputs-Outputs SIn2

DTZ - Door Time Zone close setup
 N/A

EP - Emergency Power type
Hydraulic operation only - Set to 00: 00000000

EQK

N/A. Do not adjust.

FD1 - Front Doors setup, Levels 1-8

This sets the levels for the front doors to operate.
May be used in conjunction with RD1 and SD1 for selective rear door operation
FD1 setting example: A0: 10100000 (Level G and 2). See table below.
FD1 A0: 10100000 (Level G and level 2 have front doors)
RD1 50: 01010000 (Level 1 and level 3 have rear doors)
FLOOR DESIG. FRONT DOORS REAR DOORS

3		3 (rear) 4C, 4D
2	2 (front) 3C, 3U, 3D	

1		1 (rear) 2C, 2U, 2D
G	G (front) $1 \mathrm{C}, 1 \mathrm{U}$	

FD2 - Front Doors setup, Levels 9-15

This sets the levels for the front doors to operate.
Setting example: E0: 11100000 (Levels 9-11)
May be used in conjunction with RD2 and SD2 for selective rear door operation

FS - Fire Service type

Australia: Set to 00: 00000000
USA Only. Fire Service Code 17.1. FS EEprom setting must be set to 01: 00000001

HFA - Hall Fire Alternate floor setup

USA Only. Fire Service Code 17.1. FS EEprom setting must be set to 01
When the designated floor smoke alarm is activated, the lift shall return to the HFA floor
See also Inputs-Outputs HFA
HFA...EEPROM Hall fire alternate floor. (MASK)
80: 10000000 (Level 1)
40: 01000000 (Level 2)
20: 00100000 (Level 3)
10: 00010000 (Level 4)
08: 00001000 (Level 5)
04: 00000100 (Level 6)
02: 00000010 (Level 7)
01: 00000001 (Level 8)

HA1 - HFA extended setup

Extension of HFA.
80: 10000000 (Level 9)
40: 01000000 (Level 10)
20: 00100000 (Level 11)
10: 00010000 (Level 12)
08: 00001000 (Level 13)
04: 00000100 (Level 14)
02: 00000010 (Level 15)

HFS - Hall Fire Service return floor setup

This sets the hall fire service return floor activated when HFS input is active whilst in normal mode. HFS...EEPROM Hall fire service floor. (MASK)
80: 10000000 (Level 1)
40: 01000000 (Level 2)
20: 00100000 (Level 3)
10: 00010000 (Level 4)
08: 00001000 (Level 5)
04: 00000100 (Level 6)
02: 00000010 (Level 7)
01: 00000001 (Level 8)

HF1 - HFS extended setup

Extension of HFS.
80: 10000000 (Level 9)
40: 01000000 (Level 10)

EEPROM SETTINGS

20: 00100000 (Level 11)
10: 00010000 (Level 12)
08: 00001000 (Level 13)
04: 00000100 (Level 14)
02: 00000010 (Level 15)

HR - Hospital / Hall Recall

This set the Hospital Recall floor when lift is in HR mode.
See also Inputs-Outputs SIn2
eg. 40: 01000000 (Level 2)

HR1 - Hospital / Hall Recall extended setup

Extension of HR.
eg. 40: 01000000 (Level 10)

IND - Independent Service type

Australian. - Set to 00: 00000000

LCK - Parameter lockout function

To stop unauthorised adjustments to the EEprom parameters the LCK and COD parameters are used.
LCK and COD must both be set to default values to allow other parameters to be adjusted.
See also Eeprom setting COD
LCK default. 67: 01100111
COD default. 89: 10001001

LOB - Lobby floor setup

This signal sets the master zoning floor. After the zone time period as defined by ZTM, a lift shall zone to floor defined by LOB, if unoccupied. If LOB floor is occupied then the lift shall alternatively zone to ZON floor.
A lift shall zone to floor defined by LOB and ignore ZON, when working in simplex.
LOB EEPROM Lobby floor. (MASK) Master zoning floor.
LOB must be set to the same value in all lifts belong to the group.
00: 00000000 (No zoning). To disable zoning set "LOB" and "ZON" to " 00 ".
80: 10000000 (Level 1)
40: 01000000 (Level 2)
20: 00100000 (Level 3)
10: 00010000 (Level 4)
08: 00001000 (Level 5)
04: 00000100 (Level 6)
02: 00000010 (Level 7)
01: 00000001 (Level 8)

L01 - Lobby floor extended setup

Extension of LOB.
80: 10000000 (Level 9)
40: 01000000 (Level 10)
20: 00100000 (Level 11)
10: 00010000 (Level 12)
08: 00001000 (Level 13)
04: 00000100 (Level 14)
02: 00000010 (Level 15)

L.\# - Lift Number setup

Lift number setup. Example: In a 2 car group you must have one lift set to 01 and the other set to 02 . It doesn't matter which way around they are as long as each lift is different.
L.\#...EEPROM...Lift \# (VALUE). Set value to lift number. (01 to 06 valid values.)

01: 00000001 (Lift 1)
02: 00000010 (Lift 2)
03: 00000011 (Lift 3)
04: 00000100 (Lift 4)
05: 00000101 (Lift 5)
06: 00000110 (Lift 6)

MOD - MODE Inputs setup

Enables the 8 MODE inputs to be inverted. (CFSS to PRV)
MOD EEPROM (MASK)
02: 00000010 CFS. Car fire service input inverted
04: 00000100 HFS. Hall fire service input inverted
08: 00001000 IND. Independent Operation input inverted

MSL - Magnet Slowing type

Sets the slowing/counting type.
00: $00000000 \mathrm{MSU} / \mathrm{MSD}$ magnet slowing.
01: 00000001 Pulse slowing.
02: 00000010 Pulse slowing with 2 BSL limit switched required
03: 00000011 Pulse slowing with no position update. Needs circuit to remove DZ input above leveling speed
See also Section 6: Motion - EEprom MSL setting "00", "01", "02" and "03"

NR - Door Nudging setup

Sets the door nudging feature on or off. (Nudging time is preset) See also Input - Output, NR.
Sets "NDG" output on or off to control the floor passing tone. See also Input - Output, NDG.
00: 00000000 No door nudging or passing tone. Sets EDP/OS time to 30 secs. See also Input - Output, EDP
01: 00000001 Door nudging only
02: 00000010 Door nudging and passing tone
03: 00000011 Passing tone only. Sets EDP/OS time to 30 secs. See also Input - Output, EDP
04: 00000100 Sets EDP/OS time to 180 secs. See also Input - Output, EDP

PI - Position Indication setup

PI EEPROM Position Indication output type
This setting changes the PI transistor output sequence to the following values.
00: 00000000 "Decimal outputs."
01: 00000001 '"Binary outputs."
02: 00000010 "Gray code outputs."

PRK - Park/Zone with doors open

This setting sets the lift to Zone with the doors open.
PRK EEPROM value.
00: 00000000 "Normal."
01: 00000001 "PRK doors open."

PRV - Proving required setup

If set to "01" PRV input is required to be on prior to starting a run, irrelevant of DRV type selected.
See also Input - Output, PRV.

EEPROM SETTINGS

RD1 - Rear Doors setup, Levels 1-8

This sets the levels for the rear doors to operate.
DZR relay used for rear door control, is switched by the controller DZR output
RD1 eliminates the need for a rear door/DZR sensor in shaft
May be used in conjunction with FD1 and SD1 for selective rear door operation
RD1 setting example: 50: 01010000 (Level 1 and 3). See table below.
Controller switches DZR output to 0 V when lift at level 1 or 3
FD1 A0: 10100000 (Level G and level 2 have front doors)
RD1 50: 01010000 (Level 1 and level 3 have rear doors)

FLOOR DESIG.	FRONT DOORS	REAR DOORS
3		3 (rear) 4C, 4D
2	2 (front) 3C, 3U, 3D	
1		1 (rear) 2C, 2U, 2D
G	G (front) 1C, 1U	

RD2 - Rear Doors setup, Levels 9-15

This sets the levels for the rear doors to operate.
DZR relay used for rear door control, is switched by controller DZR output
Eliminates the need for a rear door/DZR sensor in shaft
May be used in conjunction with FD2 and SD2 for selective rear door operation
Setting example: 40: 01000000 (Level 10)
Controller switches DZR output to 0 V when lift at level 10

RLV - Re-leveling setup

This sets the floor re-leveling function on/off
Setting example 00: 00000000 off. Lift will NOT re-level.

$$
\text { 01: } 00000000 \text { on. Lift will re-level. }
$$

RPT - Run Protection Timer setup

If the lift is given run signals from controller and lift does not move, (no MSU or MSD input received) the controller turns off all run signals after a certain time, (e.g. 25s) depending on value of the RPT setting. If this process is cycled 3 times, then the controller shall display RPT error message on the LCD screen.
RPT is a fatal error. Reset is only via a processor POR or Inspection on/off sequence.
Setting example 01: $00000001=25 \mathrm{~s}$
02: $00000010=50 \mathrm{~s}$
03: $00000011=75 \mathrm{~s}$
All other remaining settings including 00 , will default to the value of 25 s .
RPT does not operate on inspection or on DRV setting "01" (DA valve).

RTM - Run Time short floor run setup

Nb : DRV must be set to a traction lift setting.
If a short floor exists where the lift starts slowing prior to reaching full speed, a long creep into floor may occur. RTM setting, in conjunction with XTM setting, reduces this long creep time by holding in the fast speed relay for a defined time (XTM) after the initial slowing point.
Setting RTM. - Look at Ram address R:72. (Motion Timer).

```
02- NOR IDL ][
R:70 O0 OA 00 14
```

To access R:72 on the LCD see also Section 5: LCD
Display Options
R: 72 shown in red at left.

EEPROM SETTINGS

When performing the shortest floor run take note of the highest value R:72 reaches (in hex). Add approx. 5 (in hex) to this value and set RTM to this value.
If slowing is obtained before the value in RTM is reached, the fast speed relay (UF or DF) will be held up for extra time as defined by XTM.
Set XTM to 20. If the lift fails to slow down to leveling speed before reaching the floor, (fast speed relay is being held up too long) reduce XTM value. If there is still too much creep (fast speed relay is being held up not long enough) increase XTM time. Continue until desired result is obtained.

SD1 - Selective rear doors setup, Levels 1-8

This sets the first floor of the selective front and rear doors.
Used in conjunction with FD1 and RD1
Selective Rear Door floors are treated as two separate floors requiring separate car and landing buttons. See 1(front) and 1(rear) in table below
Setting Example: Refer to table below
SD1 40: 01000000 (Level 1 has selective front and rear doors)
FD1 D0: 11010000 (Level G, level 1(front) and level 2 have front doors)
RD1 40: 00101000 (Level 1(rear) and level 3 have rear doors)
This sets the levels for the rear doors to operate by turning on DZR (I/O5) output to 0 V when lift answers call to 3C,3U,3D or 5C,5U,5D. See RD1.

FLOOR DESIG. FRONT DOORS REAR DOORS

3		3 (rear) 5C, 5D
2	2 (front) 4C, 4U, 4D	
1	1 (front) 2C, 2U, 2D	1 (rear) 3C, 3U, 3D
G	G (front) $1 \mathrm{C}, 1 \mathrm{U}$	

SD2 - Selective rear doors setup, Levels 9-15

This sets the first floor of the selective front and rear doors.
Used in conjunction with FD2 and RD2
Setting example: 80: 10000000 (Level 9 \& 10 selective)

SDX - Star Delta Exchange Time setup

This sets the amount of time from Star dropping out and Delta picking up.
SDX EEPROM Star Delta Exchange time. (VALUE)
Set value for delay between star dropping and delta pulling in.
The time is set in 100 ms increments.
08: $00001000=800 \mathrm{~ms}$
Set between $01 \& 08$

SDX - VF Drive setting 06,07,08 brake drop time

Valid only when Eeprom setting "DRV" is set to " $06,07,08$ ".
This sets the amount of time after a run for the brake drop in 10 ms increments.
SDX value must be less than ST2 value
Set between $01 \& f f$

SFR - Short Floor Run setup

Note: this setting only works on MSL 00
This signal sets a short floor between floors, i.e the controller will not set the fast speed relays (UF \& DF). SFR...EEPROM Must be FF: 11111111 unless stated.

EEPROM SETTINGS

A setting for a short floor between levels $2 \& 3$ would be as follows.

Spares

--1 EEPROM Spare
--2 EEPROM Spare
--3 EEPROM Spare
--4 EEPROM Spare
--5 EEPROM Spare
--6 EEPROM Spare
--7 EEPROM Spare
--8 EEPROM Spare
--9 EEPROM Spare

StF - Start Fast

Number of pulses (in hex) it takes to reach fast speed
StF EEPROM Start Fast pulses. (VALUE)
Eg. 30: 00110000 (30 pulses in hex or 48 in decimal)
See also Section 6: Motion - EEprom MSL setting "01"

StM - Start Medium

Number of pulses (in hex) it takes to reach medium speed.
StM EEPROM Start Medium pulses. (VALUE)
Eg. 20: 00100000 (20 pulses in hex or 32 in decimal)
See also Section 6: Motion - EEprom MSL setting "01"

SIF - Slow Fast

Number of pulses (in hex) it takes to slow from fast speed.
SIF EEPROM Slow Fast pulses. (VALUE)
Eg. 30: 00110000 (30 pulses in hex or 48 in decimal)
See also Section 6: Motion - EEprom MSL setting "01"

SIM - Slow Medium

Number of pulses (in hex) it takes to slow from medium speed.
SIM EEPROM Slow Medium pulses. (VALUE)
Eg. 20: 00100000 (20 pulses in hex or 32 in decimal)
See also Section 6: Motion - EEprom MSL setting "01"

ST2 - Star Delta Changeover Time setup

Star connected motor running time.
The amount of time the motor runs in Star, before changing to Delta.
ST2 EEPROM Star Delta time. (VALUE)
The time is set in 100 ms increments.
08: $00001000=800 \mathrm{~ms}$
0a: $00001010=1000 \mathrm{~ms}$, " 1 second"
12: $00010010=1800 \mathrm{~ms}$, " 1.8 seconds"

ST2 - VF Drive setting 06,07,08 end run time

Valid only when Eeprom setting "DRV" is set to " $06,07,08$ ".
This sets the amount of time after a run for the $\mathrm{Up} / \mathrm{Dn}$ relays to drop in 10 ms increments.
Set between $01 \& \mathrm{ff}$.

EEPROM SETTINGS

ST2 value must be greater than SDX value

TCC - Top Car Call setup

TCC EEPROM Top car call for the "TOP" button on the circuit board (MASK)
Top floor served for this lift only.
The controller shall enter a car call to this setting when the "TOP' button on the circuit board is pressed The 8Flr link (Version 2 software) or 12Flr link (Version 3 software) to bottom right corner of the LCD, must be set to achieve this function.
40: 01000000 (Level 2)
20: 00100000 (Level 3)
10: 00010000 (Level 4)
08: 00001000 (Level 5)
04: 00000100 (Level 6)
02: 00000010 (Level 7)
01: 00000001 (Level 8)

TC1 - TCC extended setup

Extension of TCC.
80: 10000000 (Level 9)
40: 01000000 (Level 10)
20: 00100000 (Level 11)
10: 00010000 (Level 12)
08: 00001000 (Level 13)
04: 00000100 (Level 14)
02: 00000010 (Level 15)

TOP - Top floor setup

TOP EEPROM Top floor number (VALUE)
Set value to number floors served. (02 to 0 c valid values).
Lift resets to "TOP" value when TSL limit is activated.
02: 00000010 (Level 2)
03: 00000011 (Level 3)
04: 00000100 (Level 4)
05: 00000101 (Level 5)
06: 00000110 (Level 6)
07: 00000111 (Level 7)
08: 00001000 (Level 8)
09: 00001001 (Level 9)
0A: 00001010 (Level 10)
0B: 00001011 (Level 11)
0C: 00001100 (Level 12)
0D: 00001101 (Level 13)
0E: 00001110 (Level 14)
0F: 00001111 (Level 15)

UCM - Up Call Mask setup

This setting lets you define the UP call floors which the lift can serve.
With this setting you may disable UP hall calls to floors not allowed.
UCM EEPROM Up call mask. Floors allowed. (MASK) Up calls allowed for this lift only.
80: 10000000 (Level 1u)
C0: 11000000 (Level 1u,2u)
E0: 11100000 (Level 1u,2u,3u)
F0: 11110000 (Level 1u,2u,3u,4u)

EEPROM SETTINGS

F8: 11111000 (Level 1u,2u,3u,4u,5u)
FC: 11111100 (Level 1u,2u,3u,4u,5u.6u)
FE: 11111110 (Level 1u,2u,3u,4u,5u,6u,7u)
FF: 11111110 (Level 1u,2u,3u,4u,5u,6u,7u,8u)

UC1 - UCM extended setup

Extension of UCM.
80: 10000000 (Level 9u)
C0: 11000000 (Level 9u,10u)
E0: 11100000 (Level 9u,10u,11u)
F0: 11110000 (Level 9u,10u,11u,12u)
F8: 11111000 (Level 9u,10u, 11u, 12u,13u)
FC: 11111100 (Level 9u,10u,11u,12u,13u,14u)
FE: 11111110 (Level 9u,10u,11u,12u,13u,14u,15u)

XTM - Extend run time short floor run

Nb : DRV must be set to a traction lift setting.
If a short floor exists where the lift starts slowing prior to reaching full speed, a long creep into floor may occur. RTM setting, in conjunction with XTM setting, reduces this long creep time by holding in the fast speed relay for a defined time (XTM) after the initial slowing point.
Setting RTM. - Look at Ram address R:72. (Motion Timer).

```
02- NOR IDL ][
R:70 OO OA 00 14
```

To access R:72 on the LCD see also Section 5: LCD Display Options
R: 72 shown in red at left.

When performing the shortest floor run take note of the highest value R:72 reaches (in hex). Add approx. 5 (in hex) to this value and set RTM to this value.
If slowing is obtained before the value in RTM is reached, the fast speed relay (UF or DF) will be held up for extra time as defined by XTM.
Set XTM to 20. If the lift fails to slow down to leveling speed before reaching the floor, (fast speed relay is being held up too long) reduce XTM value. If there is still too much creep (fast speed relay is being held up not long enough) increase XTM time. Continue until desired result is obtained.

ZON - Zoning/Parking floor setup

ZON is only used in duplex configurations.
After the zone time period as defined by ZTM, a lift shall zone to floor defined by LOB. If LOB floor is occupied then the lift shall alternatively zone to ZON floor.
Recommend to set ZON to the same value in all lifts belong to the group.
A lift shall zone to floor defined by LOB and ignore ZON, when working in simplex.
ZON EEPROM Zone floor. (MASK) Zoning floors for other lifts.
00: 00000000 (No zoning). To disable zoning set "LOB" and "ZON" to " 00 ".
80: 10000000 (Level 1)
40: 01000000 (Level 2)
20: 00100000 (Level 3)
10: 00010000 (Level 4)
08: 00001000 (Level 5)
04: 00000100 (Level 6)
02: 00000010 (Level 7)
01: 00000001 (Level 8)

EEPROM SETTINGS

ZO1-ZON extended setup

Extension of ZON.
80: 10000000 (Level 9)
40: 01000000 (Level 10)
20: 00100000 (Level 11)
10: 00010000 (Level 12)
08: 00001000 (Level 13)
04: 00000100 (Level 14)
02: 00000010 (Level 15)

ZTM - Zoning time setup

This sets the amount of time prior to zoning to the "LOB" or "ZON" setting.
To disable zoning set "LOB" and "ZON" to " 00 ".
ZTM EEPROM Zoning time. (VALUE)
The time is set in 10 s increments.
06: $00001000=60 \mathrm{~s}$
$0 A: 00001010=100 \mathrm{~s}$, " 1 minute 40 seconds"
12: $00010010=180 \mathrm{~s}$, " 3 minutes"

\#.L - Number of Lifts setup

This sets the number of lifts in the group.
All lifts within the group must be set to the same value.
\#.L EEPROM Number of Lifts (VALUE)
01: 00000001 (1 Lift)
02: 00000010 (2 Lifts)
03: 00000011 (3 Lifts)
04: 00000100 (4 Lifts)
05: 00000101 (5 Lifts)
06: 00000110 (6 Lifts)
Set value to number of lifts. (01 to 06 valid values.)

Section

Section 3. Group

Group Connections and Communication

- 24 Vdc and 0 Vdc , up and down hall calls, HFS and HFA (if USA) inputs MUST be looped between all elevators in the group.
- Group serial communication uses RS485 3-wire system.
- Controllers in the group are linked at the Serial TX terminals, SX+, SX- and GND, using shielded 3 wire serial cable.
- Install link JP1 on the last lift of the group only.
- The same version software (build date) must be used in all grouped controllers.
- See connection diagram below.

GROUP

Group Checks

To ensure all the lifts in the group are communicating with each other, check the RAM address which shows the position of each lift.

Each lift has its position shown at the following RAM addresses.

- Lift 1. - Ram location 81
- Lift 2. - Ram location 91
- Lift 3. - Ram location A1
- Lift 4. - Ram location B1
- Lift 5. - Ram location C1
- Lift 6. - Ram location D1

To obtain RAM (R) address see Section 5, LCD Controller Status Options.

E.g. For a 2 car group. Lift 1 is on level 1 . Lift 2 is on level 2.

From lift 1 controller look at RAM address 91 . (lift 2 position). This should read a value of 02.
From lift 2 controller look at RAM address 81. (lift 1 position). This should read a value of 01.
This proves each controller knows the position of the other lift in the group, therefore indicating serial communication established.
If controllers are not communicating correctly, a value of 00 will be shown.

Group / Duplex faults

If group system is faulty check all wiring and connections as per Section 3.
Also, ensure EEprom settings L\# and \#L have been set correctly. See section 2 .
NB: Due to looping of 24 V and 0 V between all boards in the group, 24 VDC shall still exist on any board, even though it may have been turned off at the main Circuit Breaker.

DO NOT remove the 0 V or 24 V from such boards as backfeeding shall occur which can false fire inputs.
Alternatively it is ok to remove ALL plugs from the board. (ie removal for repair)

Section 4. Inputs - Outputs

All inputs except LR, SAF, HV1 and HV2 switch low to 0 Volts in respect to 24VDC. The input shall draw approx 12 mA . The input LED is in series with the input. All inputs are OPTO isolated to avoid noise-related problems.

Darlington outputs switch low to " 0 V " 0 volts in respect to 24 VDC . The output can switch a maximum of 500 mA . The output LED indicates the output status and shall be illuminated when the output has switched low. All outputs are OPTO isolated to avoid noise-related problems.

Transistor outputs switch high to " 24 V " in respect to 0 VDC . The output can switch a maximum of 1.5A. The output red LED indicates transistor output on, e.g. 1P, 2P, 3P, 4P.

BKSW - Brake Switch Input

For brake switch monitoring.
Brake lift is monitored via brake switches on the hoist machine, which input 0V to BKSW input when fully lifted.
LED on when brake is fully lifted.
Malfunctioning brake shall cause either of 2 errors - BSD or BST
BSD - If brake does not drop 1 second from when lift stops with the doors closed.
Note: BSD error shall only set when the doors are closed to enable lift to re-level with the doors open
BST - If brake does not lift once run is initiated.
See also EEprom settings, BST
See also LCD lift status BSD, BST.

BRK - Brake relay output

BRK RELAY OUTPUT Brake relay output
See Section 6: Motion, for more on the relay operation

BSL - Bottom SLowing input

Bottom floor position correction limit and forced slowdown limit for terminal floor.
BSL LED shall be off when BSL limit is activated.
BSL LED must remain off when lift is on the buffer

CBS - Hall Button Stop output

CBS TRANSISTOR OUTPUT
Hall button stop output. CBS activates when the lift answers a hall call.

CC - Car Call inputs/Darlington outputs

inputs / outputs
1C - I/O-1 ${ }^{\text {st }}$ floor car call/tell tale light
2C - I/O- $2^{\text {nd }}$ floor car call/tell tale light
3C - I/O - $3^{\text {rd }}$ floor car call/tell tale light

INPUTS - OUTPUTS

4C - I/O - $4^{\text {th }}$ floor car call/tell tale light
5C - I/O - $5^{\text {th }}$ floor car call/tell tale light
6C $-\mathrm{I} / \mathrm{O}-6^{\text {th }}$ floor car call/tell tale light
7C $-\mathrm{I} / \mathrm{O}-7^{\text {th }}$ floor car call/tell tale light
8C $-\mathrm{I} / \mathrm{O}-8^{\text {th }}$ floor car call/tell tale light
9C $-\mathrm{I} / \mathrm{O}-9^{\text {th }}$ floor car call/tell tale light
10C $-\mathrm{I} / \mathrm{O}-10^{\text {th }}$ floor car call/tell tale light
11C $-\mathrm{I} / \mathrm{O}-11^{\text {th }}$ floor car call/tell tale light
12C $-\mathrm{I} / \mathrm{O}-12^{\text {th }}$ floor car call/tell tale light
$13 \mathrm{C}-\mathrm{I} / \mathrm{O}-13^{\text {th }}$ floor car call/tell tale light
14C - I/O $-14^{\text {th }}$ floor car call/tell tale light
15C $-\mathrm{I} / \mathrm{O}-15^{\text {th }}$ floor car call/tell tale light

CFS - Car Fire Service input

Australia: CFS - Car Fire Service signal input.
LED on when keyed to CFS unless inverted with MOD setting.
CFS over rides HFS.
CFS shall allow only one car call to be entered and shall toggle to the latest pressed call.
When CFSS is pressed, CFS input must stay on.
USA: Fire Service Code 17.1. FS EEprom setting must be set to 01
CFS - Phase 2. In Car Fire Operation input.

CFSS - Car Fire Service Start input

Australia: CFSS - Car Fire Service Start signal input.
The CFSS LED is on when keyed to CFSS unless inverted with MOD setting.
The input is switched low to 0 Volts.
When on CFS this signal shall close the doors. The DOB and EDP shall be ignored. When the doors are closed the lift shall run to the floor selected.
USA: CFSS - Phase 2. In Car Call Cancel input.

DC - Door Close Relay output

DC RELAY OUTPUT Door Close relay output. See also DFC Input.

DCB - Door Close Button input

LED on when door close button is pressed unless inverted with CNT setting.
The door close button closes the doors on Independent Service.
DCB cancels door timing on normal operation if DT is set to 01 h .
Both the door detector EDP and door open button DOB shall override the DCB.

DDN - Direction Down output

DDN TRANSISTOR OUTPUT Down Direction indication output.
Output switches to 24 VDC for indication of lift advanced down direction.

DDO - Door Open Disable input / Toggle Switch

Door Open Disable input
LED on when DDO input is activated.
Toggle switch also provided on board. When switch is on (down) DDO is activated.
Allows the lift to be sent to floors via car calls without the doors opening. Useful for testing/adjusting etc.
OS output shall be activated. Lift shall be taken out of the group.
DO button, Independent Service and Fire Service override DDO

See Section 6: Motion, for more on the relay operation

DFC - Door Fully Closed input

DFC input must change state when the doors reach the fully closed limit/position.

Single Doors:

Input state can be inverted with DLI setting. See DLI in EEprom settings.
To close the lift doors, DC relay shall pull up and stay up until the DFC input is switched and the locks are made.
If DFC input does NOT switch, DCPfail shall appear on the LCD after a period of 15 seconds and drop DC
relay. After a further period of 25 seconds, the doors will re-open and display DCP (Door Close Protection) on the LCD. This process is repeated until the fault has been cleared and the DFC input switches.
While in DCPfail/DCP mode, the controller switches on the OS output. See Inputs - Outputs, OS.
Nb : When DLM $=02$, DCPfail does not apply.
Alternatively, If DFC input is switched and the door locks do not make, LCK-bad shall appear on the LCD. DC shall stay active for a period of 5 seconds to try to push the doors closed. If the door locks still fail to make then the doors shall then re-open. This process will be repeated until the fault has been cleared and the locks make. Nb : When DLM $=02$, LCK-bad does not apply, due to locks not making until a call is registered and cam lifting.

Dual Doors:

DLM EEprom setting must be set to $\mathbf{0 1}$ for dual doors.
DLI EEprom setting shall be ignored. . See DLI in EEprom settings.
DFC input is switched via the external front or rear door close relay n / o contacts.
The door close relays drop out via the door fully closed limit switches.
When the external front or rear door close relay is in DFC LED will be on.
See the following DC-DCPfail flow chart for more detail.

DFO - Door Fully Open input

DFO input must change state when the doors reach the fully open limit/position.

Single Doors:

Input state can be inverted with DLI setting. See DLI in EEprom settings.
To open the doors, DO relay shall pull up and stay up until the DFO input is switched. If DFO input does NOT switch, DOPfail shall appear on the LCD after a period of 25 seconds and drop DO relay. After 3-5 seconds

INPUTS - OUTPUTS

(depending on the state of locks and DFC) DC will then pull in and display DOP (Door Open Protection) on the LCD and close the doors. If a demand to open still exists, the doors will try to re-open. If not NOR-IDL shall appear on the LCD.
Alternatively, If DFO input is switched and the door locks are still made, BDL (Bridged Door Lock monitoring) shall appear on the LCD. Lift will remain in BDL state with doors open until the bridge has been removed from the locks, therefore insuring the lift cannot run with the doors open and the locks bridged.
When on inspection BDL is still displayed as previous, however the lift can run via inspection buttons or access control (USA Only).
While in DOP/DOPfail mode, the controller switches the OS output on. See Input -
Output, OS.

Dual Doors:

DLM EEprom setting must be set to $\mathbf{0 1}$ for dual doors.
DLI EEprom setting shall be ignored. See DLI in EEprom settings.
DFO input is switched via the external front or rear door open relay n/o contacts.
The door open relays drop out via the door fully open limit switches.
When the external front or rear door open relay is in DFO LED will be on.
See the following DO-DOPfail flow chart for more detail.

INPUTS - OUTPUTS

DHC - Down Hall Call inputs/Darlington outputs

inputs/outputs
$2 \mathrm{D}-15 \mathrm{D} \quad \mathrm{I} / \mathrm{O} \quad 2^{\text {nd }}-15^{\text {th }}$ floor DN call/tell tale light

DN - Down Relay output

DN RELAY OUTPUT Down relay output
See Section 6: Motion, for more on the relay operation

DO - Door Open Relay output

DO RELAY OUTPUT Door Open relay output. See also DFO Input.

INPUTS - OUTPUTS

DOB - Door Open Button input

LED off when door open button is pressed unless inverted with CNT setting..
The door open button is used to open the doors at floor level. (DZ on)
The DOB shall override the door close button (DCB).
When DOB input is off for extended periods (doors being held open) OS output will turn on as per EDP operation. See Inputs - Outputs, EDP.

DS - Down Slow Relay output

DS RELAY OUTPUT Down slow output
See Section 6: Motion, for more on the relay operation

DUP - Direction Up output

DUP TRANSISTOR OUTPUT Up Direction indication output.
Output switches to 24VDC for indication of lift advanced up direction.

DZ - Door Zone input

DZ LED shall be on when lift is in the Door Zone.
DZ input controls DZ relay.
Note: At floor level both MSD and MSU zones must be within the door zone (DZ).

DZR - Rear Door Zone output

DZR - DARLINGTON OUTPUT Rear door output.
Used to control DZR (rear door zone relay) when using RD1 EEprom setting
Also used for selective rear door operation. See EEprom settings, RD1 and SD1

EDP - Electronic Door Protection input

EDP - Electronic Door Protection input.
EDP LED shall be off when the light ray is obstructed, unless inverted with CNT setting.
The loss of EDP input shall reopen the doors when on normal or independent modes. The doors shall remain open until the obstruction is removed and EDP input turns back on.

EDP operation with Eeprom setting NR $=00$ or 03;
After 30 secs with EDP off and demand exists for the lift via latched hall or car calls, the lift shall be determined Out of Service. OS output will turn on, cancelling all hall calls (not car calls). Lift will remain in OS state until EDP turns back on and doors are allowed to close.

EDP operation with Eeprom setting NR $=04$;
After 180 secs with EDP off and demand exists for the lift via latched hall or car calls, the lift shall be determined Out of Service. OS output will turn on, cancelling all hall calls (not car calls).
Lift shall remain in OS state for 10 secs. OS then turns off and lift goes back into service and hall calls can be latched again. Sequence repeats if EDP remains off. This setting is used for nursing homes to allow for longer door open times.
See Inputs - Outputs, OS.
See also EEprom settings, NR

EQK - Earthquake Detection input. (Siesmic or Counterweight displacement switch)

EQK LED shall be on when EQK input is activated.
EQK shall be shown as the lift status on the LCD screen.
a: If the lift is in motion and EQK is activated, the lift shall stop at the next possible floor and remain stopped with the doors open.
b: If the lift stops between floors due to a power failure and power is restored with EQK input on, the lift shall remain stopped.
c: If the lift is stopped at a floor and EQK is activated, the lift shall remain stopped with the doors open.

INPUTS - OUTPUTS

d: If a power failure occurs while at the floor, then is restored with EQ activated, the lift shall remain stopped at that floor and re open the doors.
EQK status, once activated, shall not reset if the EQK input turns off.
EQK status, once activated, shall not reset, if a power off/on cycle occurs as the EQK status is stored in Eeprom EQK status shall reset by an inspection on/off cycle with EQK input off

Lifts with rear doors shall require a DRZ relay, operated by an inductor, rather than by DZR output;
This will ensure the correct front or rear door opens when power is restored (as per "d" above) as the controller will not know the current lift position unless at a terminal floor.

HFA - Hall Fire Alternate input

USA Only. Fire Service Code 17.1. FS EEprom setting must be set to 01
HFA LED shall be on when the fire alarm initiating device is activated at the designated floor. When on normal operation mode, the lift shall return to the HFA floor as defined by EEProm setting HFA.

HCB - Hall Call Bypass Input

HCB/SIn1
LED shall be on when lift is on Hall Call Bypass.
Used in conjunction with a load weighing switch. Eg. when car is full, input is turned on.
Lift will ignore (but not cancel) hall calls while HCB input is on.

HFL - Hall Fire Light output

HFL - DARLINGTON OUTPUT
USA Only. Fire Service Code 17.1. FS EEprom setting must be set to 01
This output shall be activated when on fire service to control HFL relay which disconnects HF- (see page 3 and 4 of ECD circuit diagrams) to render call registered, directional lights and landing indicators inoperative as per code requirement.
Note: Car position indicators and position indicators at the designated level and fire control station shall remain operative when on fire service.

HFM Hall Fire Machine room/Hoist way input

USA Only. Fire Service Code 17.1. FS EEprom setting must be set to 01
HFM LED shall be on when a fire alarm initiating device is activated in the machine room or in the lift shaft.
Causes the illuminated visual signal to turn on intermittently (flash)
See Inputs - Outputs, HFV.

HFR - Hall Fire Reset input

HFR
USA Only. Fire Service Code 17.1. FS EEprom setting must be set to 01
HFR input used to remove elevator from Phase 1 operation
HFR LED shall be on when keyed to HFR (reset).

HFS - Hall Fire Service input

HFS initiates the fire service recall operation
Australia: HFS LED shall be on when HFS recall is activated. (Unless inverted with MOD setting) via the fireman's hall fire service key switch
If lift is on normal operation mode and HFS is activated, the lift shall return to the HFS floor as defined by EEProm setting HFS.
USA: Fire Service Code 17.1. FS EEprom setting must be set to 01
HFS LED shall be on when HFS/PHASE 1 recall is activated. (Unless inverted with MOD setting) via the fire recall switch or a fire alarm initiating device
If lift is on normal operation mode and HFS/PHASE 1 is activated, the lift shall return to the HFS floor as defined by EEprom setting HFS.

See also EEprom setting HFA.

HFV - Hall Fire Visual signal output

HFV - DARLINGTON OUTPUT
USA Only. Fire Service Code 17.1. FS EEprom setting must be set to 01
This output shall be activated to control the illuminated visual signal.
HFV output will turn on intermittently (flash) if the HFM input is activated. See Inputs - Outputs, HFM.

HV2 - High Voltage input

USA Only. HV2 - High voltage processor input for monitoring 'BDL' (Lift Status) for the landing locks. HV2 LED shall be on when door locks are made.
HV2 - Ram address R:43

IDN - Inspection Down input

IDN - Inspection down signal input
IDN LED shall be on when down inspection button pressed.
Momentary push button switch also provided on board for IDN

IND - Independent Service input

IND - Independent service input.
IND LED shall be on when keyed to IND unless inverted with MOD setting.
Independent service is the same as exclusive service.
If the lift is on normal operation mode and the lift is keyed to independent service the operation shall be as follows. The car doors shall remain open. When a car call is entered the doors shall close only whilst the call button is being pressed. This call button operates as a dual call enter and door close button. Alternatively you may enter the call with the car call button and then use the door close button to close the doors.
Only one call may be entered at a time.
To change the desired destination floor, press the new car call button to toggle the call.
Operation modes including Car Fire Service, Hall Fire Service, Inspection and Emergency lowering operation shall override Independent Service.

INSP - Inspection Control input

INSP LED shall be off when on inspection.
Toggle switch also provided on board for INSP. When switch is down, INSP is ON.
Note: Top of car inspection must be OFF for on board Inspection switch/buttons to be operative.

IRO - Inspection Relay Output

Darlington output
This output shall be activated when the lift is on inspection.
Used for driving an external inspection relay, where extra inspection contacts may be required. E.g. Inspection contact in series with up fast speed valve, so lift travels on slow speed when on inspection.
Not applicable when DRV is set "OA". When DRV $=0 \mathrm{~A}$, this output shall be activated when the lift is performing a correction run. To be used for driving an external relay, where the contacts may be required for a correction speed input to the drive.

IUP - Inspection Up input

IUP - Inspection up signal input
IUP LED shall be on when up inspection button pressed.
Momentary push button switch also provided on board for IUP

LEV - Leveling Relay output

LEV RELAY OUTPUT

INPUTS - OUTPUTS

Relay pulls up when lift leveling or re-leveling to floor

LR - Lock Relay input.

LR - Lock Relay input for LR Relay. High voltage input.
LR input controls LR relay. The LR n/o contacts are used in the safety circuit. (See page 2 of ECD circuit diagrams)
LR and LRX inputs are wired in parallel. See also Inputs - Outputs LRX

LR - Lock Relay output

LR RELAY OUTPUT
Relay pulls up when LR input is on.
See also Inputs - Outputs LR

LRX - Aux LR input.

LRX/HV1 - Lock input for processor. High voltage input. Also used for monitoring 'BDL’ (Lift Status).
LRX and LR inputs are wired in parallel. See also Inputs - Outputs LR
(See page 2 of ECD circuit diagrams)
LRX - Ram address R:44

M3 - Door Locks input

M3 - Lock input for processor. High voltage input
(See page 2 of ECD circuit diagrams)
M3 - Ram address R:46

MSD - Magnetic Switch Down input

MSD - Input pulls up on board relay MSD which is used in the masking/re-leveling circuit and inputs to tell the lift to re-level and count.
Ensure the MSD slowing input is activated before the Bottom Slowing Limit (BSL) at the bottom floor.
Counting Operation (MSL=00) - When the lift is running down between floors it shall advance the position count when a MSD input is received. The lift indicator outputs 1 P to 8 P shall change accordingly. The LCD position shall remain the same until the lift passes through DZ. At floor level the MSD magnets must be within the DZ magnet or a dual advance count may occur.

Re-leveling Operation - If the lift is stationary at a floor and MSD is off with DZ and MSU on then the lift shall relevel up (LUP displayed on LCD) until MSD is switched on again. If the lift fails to re level to the floor after 3 consecutive, 10 second attempts, LEV will be displayed on the LCD. Lift shall no longer attempt to re level. Note: LEV status does not take the lift out of service.
A re-level shall only occur approximately 3 seconds after a run or previous re-level whilst lift is on an appropriate mode.
A re-level shall only occur if the doors are fully closed or fully open

MSU - Magnetic Switch Up input

MSU - Input pulls up on board relay MSU which is used in the masking/re-leveling circuit and inputs to tell the lift to re-level and count.
Ensure the MSU slowing input is activated before the Top Slowing Limit (TSL) at the top floor.
Counting Operation (MSL=00) - When the lift is running up between floors it shall advance the position count when a MSU input is received. The lift indicator outputs 1P to 8P shall change accordingly. The LCD position shall remain the same until the lift passes through DZ. At floor level the MSU magnets must be within the DZ magnet or a dual advance count may occur.

INPUTS - OUTPUTS

Re-leveling Operation - If the lift is stationary at a floor and MSU is off with DZ and MSD on then the lift shall relevel down (LDN displayed on LCD) until MSU is switched on again. If the lift fails to re level to the floor after 3 consecutive, 10 second attempts, LEV will be displayed on the LCD. Lift shall no longer attempt to re level.
Note: LEV status does not take the lift out of service.
A re-level shall only occur approximately 3 seconds after a run or previous re-level whilst lift is on an appropriate mode.
A re-level shall only occur if the doors are fully closed or fully open

NDG - Nudging Buzzer output

NDG - DARLINGTON OUTPUT
NDG is used to activate an audible signal when lift on HFS recall
NDG can also be used to operate an audible floor passing tone device
NDG can also be used to operate a door nudging buzzer
The nudging buzzer shall operate when the nudging relay NR, is activated. See Inputs - Outputs, NR
See also EEprom settings, NR

NR - Nudging Relay output

NR RELAY OUTPUT Nudging relay output
NR relay pulls up when the lift is on door nudging mode.
In door nudging mode, the doors will close regardless of "EDP" input state. The NR relay contacts are used to signal the door operator to close the doors at a reduced speed and torque to avoid injury.
Nudging mode occurs when doors are held open via EDP for more than 20 seconds after door timing (DTC,
DTH, DTL) has expired. Lift must be in NOR mode (normal operation) for nudging to operate.
See also Inputs - Outputs, NDG
See also EEprom settings, NR

OS - Out of Service output

OS TRANSISTOR OUTPUT Out of service output
This signal turns on whenever the lift is out of the group and therefore not available to answer hall calls.
If safeties are lost or the lift is not in normal mode of operation this signal shall activate.
NB: If EEprom setting, DRV $=03$ or $0 \mathrm{~A}, \mathrm{CFS}$ and IND do not turn on OS output

PI - Position output

PI transistor position outputs switch high to 24 VDC and are used for indication of lift position.
This signal is the advanced lift position count.
Note: The LCD displays the actual and not the advanced position (PI) count.
The PI output may be in decimal, binary or grey code depending on the PI Setting. See EEprom settings, PI

P1-P15 TRANSISTOR OUTPUT Position 1-15 output

PRK - Parking Function input

PRK LED shall be on when lift is on park.
When PRK input is active, the lift shall remain at the floor with the doors open, when on normal or independent operation.
All car calls and door close buttons shall be ignored.
The controller switches the OS output on. See Input - Output, OS.
USA Only. Fire Service Code 17.1. FS EEprom setting must be set to 01
PRK input shall be activated via the "hold" key switch position when on Fire Operation - Phase 2. The lift will remain at the floor with the doors open. Door close buttons shall be inoperative and car calls shall not be registered.

INPUTS - OUTPUTS

PRV - Proving Circuit input

PRV input may be required to be on prior to a run being initiated, depending on the DRV setting. See Section 6: Motion, for more on PRV input conditions
The PRV input is used to ensure the drive contactors have been released on stopping
Some DRV settings do not require the PRV input to be on prior to a run, (see Section 6: Motion) however, if EEprom setting PRV is set to " 01 " PRV input is required to be on prior to starting a run, irrelevant of DRV type selected.
PRV input is also used to complete a run on DRV setting 03.
See also EEprom settings, PRV

PULSE - Pulse Counting Input

PULSE - Pulse Counting input.
The controller uses this input only when EEProm MSL is set to " 01 " or " 02 ". See section 6: Motion - EEprom MSL setting " 01 " and " 02 "
0 V input pulse recommended every 20 mm of car travel.

SAF - Safety Circuit input

SAF - Safety Circuit input for processor. High voltage input
SAF LED shall be on when safety circuit is made.
Safety circuit input SAF must be on for normal operation. SAF input is supplied from the end of the safety circuit (normally terminal 16 - See page 2 of ECD circuit diagrams). If this input is lost then the SAF LED shall be off and the LCD lift status shall show SAF.
SAF - Ram address R:45

SIn1 - Spare Input 1

See Inputs - Outputs, HCB

SIn2 - HR Input

Used to recall a lift to a particular floor in an emergency. Lift is then turned to IND or CFS.
When SIN2 switches to 0V, the lift shall cancel all calls (car and hall if simplex, car only if duplex), stop at the next available landing without opening its doors and return to the floor set at parameter HR or HR1.
When in HR mode, the lift shall be out of service as indicated by OS output turning on. Also, while the lift is in HR mode output SO 1 is turned on, for indication if required.
Once the lift arrives at the designated HR floor it will open its doors for the time set in DTR. Nb: If SIN2 input is held on the lift shall remain at the HR floor with the doors open. DTR shall not operate.
If the lift is not turned to IND or CFS after this time it returns to normal operation.
See also EEprom settings HR, HR1 and DTR.

SIn3 - ??

SIn4 - ??

S01 - Spare Output 1

While the lift is in HR mode output SO1 is turned on, for indication if required.
See also Inputs - Outputs SIN2 - HR

SP - Emergency Power input

SP - For hydraulic elevator operation only
SP LED shall be on when emergency power is activated.
When SP input is activated the lift shall return to the lowest level and open its doors. The doors will then close and shall remain closed until the signal is lost or the door open button is pressed.
Lift shall remain out of service (OS output will activate.) while SP is on.

SP1 - Multi Purpose output 1

SP1 RELAY OUTPUT Star contactor output
See Section 6: Motion, for more on the relay operation
See also EEprom settings ST2 - Star/Delta changeover time and SDX - Star Delta Exchange time

SP2 - Multi Purpose output 2

SP2 RELAY OUTPUT Delta contactor output
See Section 6: Motion, for more on the relay operation
See also EEprom settings ST2 - Star/Delta changeover time and SDX - Star Delta Exchange time

SP3 - Multi Purpose output 3

SP3 RELAY OUTPUT Spare relay output 3
SP3 may be used for Inspection Speed input, depending on DRV setting
SP3 may be used for auxiliary leveling pump operation, if "aux pump" software is used
See Section 6: Motion, for more on the relay operation

SP4 - Multi Purpose output 4

SP4 RELAY OUTPUT Spare relay output 4
Australia: SP4 relay pulls in when SAF input is active.
On loss of safety circuit (and SAF input), SP4 relay drops out.
SP4 relay contacts may be used to disconnect the door operator from the supply on loss of the safety circuit.
USA: Fire Service Code 17.1. FS EEprom setting must be set to 01
When Fire Recall - Phase 1 activated, SP4 n/o relay contact is used to override the emergency stop switch in the car.

SX- Serial communication input

Group RS485 connection.
See Section 3: Group

SX+ Serial communication input

Group RS485 connection.
See Section 3: Group

TSL - Top Slowing input

Top floor position correction limit and forced slowdown limit for terminal floor.
TSL LED shall be off when TSL limit is activated.
TSL LED must remain off when lift is at the highest point in the shaft, ie counterweight landed or ram fully extended

UD - Up/Dn Relay output

UD RELAY OUTPUT Com. UP/DN output.
See Section 6: Motion, for more on the relay operation

UF - Up Fast Relay output

UF RELAY OUTPUT Up fast output
See Section 6: Motion, for more on the relay operation

UHC - Up Hall Call inputs / outputs

inputs / outputs
1U-14U I/O $\quad 1^{\text {st }}-14^{\text {th }}$ floor UP call/tell tale light

INPUTS - OUTPUTS

UP - Up Relay output

UP RELAY OUTPUT Up relay output
See Section 6: Motion, for more on the relay operation

US - Up Slow Relay output

US RELAY OUTPUT Up slow output
See Section 6: Motion, for more on the relay operation

Section 5. Liquid Crystal Display

Understanding the LCD

Reading the liquid crystal display Modes, Position, Address' and status

Note: LCD contrast is set via POT located to the upper left of LCD. (POT 2.)

LCD Status Line

LCD Position \& Direction

02u NOR IDL] [
ECD Aust. V-5. 32

The lift position is shown in the top left of the LCD display, followed by the current demand direction.
The above example shows the lift on the $2^{\text {nd }}$ floor with an up direction

LCD Lift Modes

02d NOR RDN] [
The lift modes are shown in the top left centre of the LCD display.
The above example shows the lift on Normal

- CFS

Lift on Car Fire Service

- COR Lift performing a correction run due to loss of position
- DDO Door Open Disable (Toggle switch provided on board)
- EP Lift on Emergency power
- EQK Earthquake input activated
- HCB Hall Call Bypass
- HFA Lift on Hall Fire Alternate Service (USA-Fire Service Code 17.1 only)
- HFS Lift on Hall Fire Service
- IND Lift on Independent service
- INS Lift on Inspection (Togole switch provided on board)
- NOR Lift on Normal
- NPT No Pulse Time out (Fatal error. See Section 6,Counting method 01, NPT)
- PRK Lift on Parking
- ZON Lift zoned/zoning to floor

LCD Lift Status

02d NOR RDN] [
The lift status is shown to the top right centre of the LCD display.
ECD Aust. V-5. 32 The above example shows the lift Running Down

- BDL Bridged door lock. Doors shall remain open until bridge is removed. See DFO input
- BSD Brake did not drop. Fatal error. See BKSW input
- BST Brake did not lift. Fatal error. See BKSW input. See EEprom settings - BST
- DCP Fail door close protection. See DFC input
- DOP Fail door open protection. See DFO input
- IDL Lift idle
- LCK Door Locks not made. See DFC input
- LDN Leveling down, displays on re-level down. See MSU input
- LEV Leveling blocked, displays on re-leveling failed and disabled. See MSD/MSU input
- LRN Learning floor operation in progress.
- LUP Leveling up, displays on re-level up. See MSD input
- PRV Waiting PRV input to run. See PRV input
- RDN Running down
- RPT Run protection time exceeded. Fatal error. See EEprom settings - RPT
- RUP Running up
- SAF Lost safety circuit. See SAF input

LCD Door Modes

02- NOR LCK-bad
ECD Aust. V-5. 32

The door mode is shown to the top right of the LCD display. It has the following status.

- <> Doors opening
- [] Doors open
- >< Doors closing
-] [Doors closed
- -bad Doors fully closed but door locks not made. See DFC input
- -fail Doors failed on DOP or DCP. See DFC/DFO input
- -- Doors on other control. ie - Inspection.

LCD Control Buttons

The Control buttons are used for accessing and programming the second line of the LCD display

Buttons -

- $>\quad=$ FORWARDS

LIQUID CRYSTAL DISPLAY

- $<$ = BACKWARDS
- $\wedge \quad=$ UP
- $v \quad=$ DOWN
- ENT = ENTER

LCD Display Options

Use the forwards and backwards buttons to cycle through the available options

```
02- NOR IDL ][
ECD Aust. V-5.32
```

\wedge UP

```
02- NOR IDL ][
Bld: Jan 29 2018
```

> FORWARDS

```
02- NOR IDL ][
BOT 01 :00000000
```


EEProm settings and values

Press \wedge and \vee to scroll through the adjustable EEprom settings.
See Section 2, EEprom settings
> FORWARDS

$$
\begin{array}{cc}
\text { 02- } & \text { NOR IDL }][\\
\text { R:00 } 00 \text { fc fe e9 }
\end{array}
$$

> FORWARDS

$$
\begin{aligned}
& \text { 02- NOR IDL][} \\
& \text { Log Run/Door Ops }
\end{aligned}
$$

> FORWARDS

> | $02-$ | NOR IDL][|
| :--- | :--- |
| Flr Positioning | |

Floor Positioning
See Motion. Counting method 01.

Section 6. Motion

Motion Control Outputs

Drive settings and their output status.

The controller may output to various different drives as per the list below depending on the DRV EEProm setting. The following diagrams only indicate the drive outputs but do not show re-leveling functions and timing.

DRV...EEPROM...Drive control type.

1. On inspection SP3 turns on for inspection speed

VF Drive Type 1 KEB-VF, ZETADYN-VF.
Setting "03"

2 Speed AC
Setting "04"

GMV 3010/S, Blain EV100, Maxton, Bucher LRV, EECO. Setting "05"

1. On inspection SP3 turns on for inspection speed

ABB VF
PDL VF. MULTI REF. 3 WIRE CONTROL
MF14 MF15 MF16

SPEED	DS/US	UF/DF	SP1	FUNCTION
N/A	1	0	0	N/A 0 rpm
INSP SLOW	0	1	0	RPM / Contract fpm $\times 10=$ set for 10fpm
INSP FAST	1	1	0	RPM / Contract fpm $\times 50=$ set for 50fpm
LEV	0	0	1	RPM / Contract fpm $\times 10=$ set for 10fpm
SLOW	1	0	1	RPM / Contract fpm $\times 25=$ set for 25fpm
INTER	0	1	1	RPM $/ 0.75=$ set for 75% Cont Spd
FAST	1	1	1	Set as per motor rpm sync spd (RPM)

SPEED	DS/US	UF/DF	SP1	MULTI REF. FUNCTIONS
N/A	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	N/A 0 rpm
INSP SLOW-M2	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	Set for 10fpm
INSP FAST-M6	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	Set for 50fpm
LEV -M1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	Set for 10fpm
SLOW -M5	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	Set for 25fpm
INTER -M3	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	Set for 75\% Cont Spd
FAST -M7	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	Contract Speed (as a \%)

ECD DRV Setting - "07"

Note:
PRV must be active prior to run.
PRV is not required on inspection.
SP3 turns on for insp speed.
The end of the run is initiated by loss of leveling. BRK then holds up for SDX time and then UD is held up for ST2 time in 10 ms increments.
SDX time must be less than ST2 time.
Default SDX=32, ST2=33

VF Drive Type 5 THY CPIK-VF.
 Setting "09"

1. To initiate a run, "PRV"
must be active prior to run.
"PRV" turns off during entire run and
becomes active to complete the run.
" $P R V$ " is not required on inspection.

	SP2	SP3	UF/DF
CREEP SPEED	0	1	1
INSPECTION SPEED	0	1	0
MIDDLE1 SPEED	1	1	0
HIGH SPEED	1	1	1

VF Drive Type 6
Setting " $0 A^{\prime}$ " Gefran with DB
Similar to "03" with UD delay off for Synch gearless AC. (drop DB contactor)

Note:

1. To initiate a run, "PRV" must be active prior to run. "PRV" turns off during entire run and becomes active to complete the run.
"PRV" is not required on inspection.
2. On inspection SP3 turns on for insp speed.

On inspection UF and DF turn off.
3. SP2 turns on for intermiediate speed (MSL=01 only)
4. UD relay has 1.0 sec delay off after completion of run
5. US/ DS used for terminal speed check on lifts above $1 \mathrm{~m} / \mathrm{s}$
6. SO4/IRO turns on when performing a correction run. NOT used for INSP output
7. CFS and IND do not turn on OS output

Counting Method "00" - Magnet Counting.

EEProm MSL setting " 00 "

The controller counts its position within the lift shaft using the DZ - Door Zone Input, MSU - Magnet Switch Up Input, MSD - Magnet Switch Down Input, TSL - Top Slowing Limit and BSL - Bottom Slowing Limit.

If the lift is stationary or running down and BSL input is removed, the lift shall reset to the bottom floor. If running down in fast speed, the fast speed inputs shall be turned off.

If the lift is stationary or running up and TSL input is removed, the lift shall reset to the top floor. If running up in fast speed, the fast speed inputs shall be turned off.

The shaft information at floor level must be as per the Counting Method " 00 " Shaft Layout drawing in that the MSD and MSU vanes must be within the door zone. See the diagram; "Counting Method "00' Shaft Layout" at the end of this section.

If the lift was to leave the bottom floor in the up direction heading to the third landing it would count as follows.

- While traveling up fast all MSD out of the DZ shall be ignored.
- As the lift travels up fast and passes MSU slowing magnet for level 2, the advance count is shown by transistor outputs 1P-8P.
- As the lift travels up fast and passes the DZ magnet for level 2 (MSU and MSD ignored/masked by DZ) the position count as shown on the LCD shall increment to level 2 .
- As the lift travels up fast and passes MSU slowing magnet for level 3, the advance count is shown by transistor outputs 1P-8P. As the lift advance counts, slowing shall be initiated for level 3 .
- The lift shall now level into the third floor. The position count shall increment to level 3 when the DZ vane is entered. The lift shall remain running until both MSU and MSD are on. LEV relay output shall turn on when either MSU or MSD is on.

Counting Method "00’ Shaft Layout

Counting Method " 01 " - Pulse Counting.

Also used for short floors that requires an intermediate speed, to avoid long creep times. Long creep times can be caused on a shorter floor where the lift does not reach rated speed before receiving a slow down signal. As the lift has not reached rated speed, it will decelerate quicker and arrive at leveling speed further away from floor level, than had it been at rated speed. This results in the long creep time into the floor.

EEProm MSL setting "01"

The controller counts its position within the lift shaft using the pulse input. See also Inputs-Outputs, PULSE The number of pulses are counted from the lowest landing.
The number of pulses are converted to a HEX value and stored for each level. (for processor calculations) (The lowest level is recorded with a HEX value of 40)
Using these values in conjunction with the associated EEprom settings Stf, Stm, Slf and Slm, the processor makes calculations for speed selections and slowing distances.
The 0 V input pulse is recommended approximately every 40 mm of car travel.
No MSU or MSD inputs are required between the floors for slowing (as per setting 00).
DZ, MSU and MSD inputs are required at floor levels for accurate leveling and position count check/reset and learn floor procedures.
TSL and BSL operate as per setting 00
The shaft information at floor level must be as per the Counting Method " 01 " Shaft Layout drawing in that the MSD and MSU vanes must be within the door zone. See the diagram; "Counting Method "01" Shaft Layout" at the end of this section.

Note: For a learn floor (Learn Run), if the MSU and MSD vanes are not in the correct order - the position shall not be stored at those floors.

Learn Run:

To perform a learn run to store the Hex count for each floor

- Ensure BSL and TSL operate to slow lift from fast speed.
- Set MSL to "01"
- Ensure all DZ, MSU and MSD inductors/magnets are accurately placed at each floor level.
- MSU and MSD magnets between floors are not required (as per setting MSL " 00 ")
- From the "text plus software version" display on the LCD, scroll through the available options using the " " " button until you get to the Floor Positioning display. (See Section 5, LCD Display Options). Now use the " \wedge " button to scroll through to Learn Floor and press [ENT]. Lift is now "out of service" - OS output on.

```
02- NOR IDL ][
Learn Flr [ENT]
```

- The cycle shall first run the lift to the bottom floor (if not already there).
- The lift shall then run to the top, counting and saving the floor position data into each floor address while running up. (The position data is calculated by the processor from the DZ, MSU and MSD inputs at each floor level).

```
01u LRN RUP ][
Wait.......learning
```

- As the lift passes floors you shall see the green LED beside the watchdog flash to confirm the saving of the floor data.

MOTION

- Once the lift has reached the top floor the lift shall revert to normal operation.
- The HEX value/count of each floor can be viewed by pressing the " \wedge " button to scroll through to the various levels
01- NOR IDL][
01- NOR IDL][
Pos.Count. 0040
Pos.Count. 0040
current lift position in HEX
01- NOR IDL] [Level 1 stored HEX
01- NOR IDL] [Level 1 stored HEX
Level 1 0040
Level 1 0040
01- NOR IDL] [Level 2 stored HEX
01- NOR IDL] [Level 2 stored HEX
Level 2 012C
Level 2 012C
Position Count
Position Count

The hex count for each floor/level should be recorded in the following Pulse distance table;

Pulse distance table:

- No MSU or MSD magnets between floors when MSL $=01$

Variable speed selection:

All values are referred to in HEX.
Before a run, the speed (fast, medium or slow) is selected after calculating the distance to the selected floor.

- Rated (max) speed is selected when $(\mathrm{Stf}+\mathrm{Slf})<$ the commencing floor run hex value.
- Medium speed is selected when $(\mathrm{Stf}+\mathrm{Slf})>$ the commencing floor run and $(\mathrm{Stm}+\mathrm{Slm})<$ the commencing floor run hex value.
- Slow or leveling speed (depending on DRV setting) shall be selected when $(\mathrm{Stm}+\mathrm{Slf})>$ the commencing floor run hex value.

On EEprom DRV setting 03;

- Fast speed is selected by DF and UF relay. The relay contacts are used for the max/rated speed input to the drive.
- Medium or intermediate speed is selected by SP2 relay. The relay contacts are used for the intermediate speed input to the drive.

Example:
 Speed selection. Nb: HEX calculator recommended

A lift needs to travel from level 1 to level 2.
Level 2 hex count $=12 \mathrm{C}$.
Level 1 hex count $=40$.
Distance between level 1 and 2 is $12 \mathrm{C}-40=\mathbf{E C}$. (the commencing floor run hex value)
Assuming equal accel and decel rates and lift slows as soon as the rated speed is reached, the minimum distance required for a fast speed run will be $\mathbf{5 A}(\mathrm{Stf})+\mathbf{5 A}(\mathrm{Slf})=\mathbf{B 4}$

As shown in Fig 6a, B4 is less than EC, which means the processor will calculate that the full speed relay can be picked for a run between level 1 and 2. Ie, rated (max) speed is selected when $\operatorname{Stf}+\operatorname{Slf}(\mathrm{B} 4)<$ the commencing floor run hex value (EC).
Pulses to get to Fast speed (Stf) + Pulses to slow from Fast speed (Slf) $=$ distance required for a fast speed run.

Fig 6a. (Ref. TurboCad - Pulse Graphs)

MOTION

A run from level 1 to 2 will look like the following graph, Fig 6b;
As explained by Fig 6a, fast speed can be selected.
After Stf distance of 5 A hex pulses lift is at full speed.
Lift stays at full speed for distance of 38 hex pulses
At a distance of Slf (5A hex pulses) from level 2, the fast speed relay is dropped to initiate the slowdown $(5 \mathrm{~A}+38+5 \mathrm{~A}=\mathrm{EC})$
MSU, MSD and DZ inputs are then used to control the final stop.

Fig 6b. (Ref. TurboCad - Pulse Graphs)

If, for example, the drive is adjusted for a quicker decel rate, you can decrease Slf. This lower value allows the lift to stay at rated speed longer (now distance of 48 hex pulses) by dropping the fast speed relay later (closer to, or 4A hex pulses from, level 2).
This will mean a faster floor to floor run than Fig 6b.
Nb : If the decel rate is made quicker and Slf is not decreased, the lift will slow down too early, which will result in long "creep time" into the floor

Fig 6c. (Ref. TurboCad - Pulse Graphs)

The medium or intermediate speed is used for shorter floor(s). See Fig 6d.

MOTION

Assume the distance between another 2 floors has a hex pulse count of A6. A6 is less than B4, which is the minimum count required for a fast speed run.
Therefore a fast speed run cannot be selected (not enough distance) between these 2 floors.
The required distance for a medium speed run is now checked.
$4 \mathrm{C}(\mathrm{Stm})+4 \mathrm{C}(\mathrm{Slm})=98$.
98 is less than A 6 so a medium speed run is now selected. Ie, the medium speed is selected when $\mathrm{Stf}+\mathrm{Slf}(\mathrm{B} 4)>$ the commencing floor run (A6) and Stm $+\operatorname{Slm}(98)<$ the commencing floor run (A6).

Fig 6d. (Ref. TurboCad - Pulse Graphs)

Terminal floors:

BSL and TSL drop out the fast speed relay, which overrides Slf. These limits do not affect medium speed. Depending on the medium speed, an additional limit at the top and bottom may be required to drop out the medium speed input to the drive.
If the fast speed slowing is required more than a floor from the terminal floors, additional limits (to the TSL and BSL) shall be required to drop out the fast speed input to the drive. This is because BSL \& TSL must not overlap other floors. If they did, this would cause the lift to set to a terminal floor before the lift was actually there.
On a correction run the lift shall perform a correction run to the lowest floor unless BSL is off. In some circumstances the lift may require a correction run just above BSL. In this situation the lift will take off on fast speed, then get its slow down very soon afterwards, resulting in a very long creep time. The XTM and RTM settings may be used to overcome this.

NPT: No Pulse Time out Mode. (MSL = 01, 02)
During an up run, if the controller loses the pulse input, the lift shall travel to the top floor and stop, then perform a correction run down to the bottom floor and display NPT on the LCD.
During a down run, if the controller loses the pulse input, the lift shall travel to the bottom floor and stop and display NPT on the LCD.
See also Inputs-Outputs, PULSE
Check by observing flashing of PULSE - LED input
NPT is a fatal error. Reset is only via a processor POR or Inspection on/off sequence.

MOTION

Counting Method "02" - Pulse Counting.

Refer to the following explanation and "Counting Method 02 Shaft Layout" diagram;
If the fast speed slowdown distance for level 1 exceeds the distance from level 2 to level 1, BSL would need to be placed above level 2 . This creates a problem, as the lift would reset to level 1 , when on level 2.
In this case, the extra limit switch, BSL-2 must be installed and MSL set to 02.
BSL-2 is wired in series with the DF relay contact, to ensure the DF input to the drive is lost when approaching level 1 on fast speed or when a correction run is being performed.
BSL-2 limit switch should switch approx 50 mm below the down fast slowdown point.
The normal BSL limit switch (wired to BSL input) is placed between levels 1 and 2 for position correction.
In this case, the lift cannot perform a fast speed (DF) run from level 2 down to level 1, so the medium or intermediate speed (SP2 relay) would be selected.
MSL $=02$ ensures the loss of BSL input shall drop the SP2 intermediate speed relay. Nb : When MSL $=01$ loss of BSL input does not drop SP2

BSL limit switch (wired to BSL input) should be approx 50 mm below the down intermediate speed slowdown point.
BSL must remain activated all the way down to the car being on the buffer.
BSL-2 limit switch (wired in series with DF) must remain activated, at least, until BSL limit becomes activated.

The same applies for the TSL and TSL-2 limit switches, except in the up direction;
TSL limit switch (wired to TSL input) should be approx 50 mm below the up intermediate speed slowdown point. TSL must remain activated all the way up, to the point where the counterweight is landed.
TSL-2 limit switch (wired in series with UF) must remain activated, at least, until TSL limit becomes activated.

Counting Method "02' Shaft Layout

Counting Method "03" - Pulse Counting no update.

Is the same as MSL 01 except that it will not update the pulse count position whilst running.
This setting also requires that the DZ input not be active whilst the lift is travelling above leveling speed. Eg, Use ODS in series with DZ input.

This setting may be useful for curing "out of step" faults occurring due to electrical noise within the installation.

Section

7

Section 7: Faults - Fault finding.

Upgrade Controller software.

Controller software may be required to be updated depending on the version installed and the options the lift has. While we try to make it as simple as possible for software upgrades, unfortunately some EEPROM address' may be required to be edited due to additional features being added.
It is recommended that the Service Mechanic that changes this software knows how to change EEPROM settings and has a definition list for the new version being installed.

Group/Duplex Faults

See Section 3. Group faults

Leveling inhibit. LEV

A leveling failure has been added to stop the lift from re-leveling after 3 attempts of 10 seconds.
See Section5. LCD lift status - LEV

Run protection timer. RPT

RPT is a fatal error and can be reset only via a processor POR or Inspection on/off sequence.
See also EEprom setting RPT for more information on RPT sequence.

Lift won't re-level with doors open

The most common cause for this is the masking circuit.
Note: For this to operate correctly you require one of MSU or MSD inputs but not both. This shall initiate a relevel, which shall be indicated by the UP or DN and slow speed onboard relays to energize.
Also ensure lift is on operating mode normal.
We must ensure we have a circuit from terminal 16 through to M3. Check your links and status of onboard relays.

If you have the supply to M3 and onboard direction relays up you can then check the neutral side.
The neutral is also switched through a "LR" or "DZ" contact onboard. This switches "N" through to M4.

On board fuse blows

There are 2 fuses mounted on the controller board.
The 2A fuse protects the 5 Vdc supply to all the logic on board.
The 4 A fuse protects the 24 Vdc supply.
If $2 \mathrm{~A}(5 \mathrm{Vdc})$ fuse blows check that the $\mathbf{6 V}$ Zener diode is not short circuited. (return for repairs)
If $4 \mathrm{~A}(24 \mathrm{Vdc})$ fuse blows.

1. Test for fault on 24 Vdc circuits (inputs/outputs)
2. Remove all external plugs except 18 Vac and 10 Vac
3. Replace fuse. If 4A fuse still blows, check that the 30V Zener diode is not short circuited. (return for repairs)
4. If fuse does not blow plug in external inputs/outputs one plug at a time and test for external fault.

Testing 24Vdc

Ensure 0 V and +24 V are free from other voltages. High voltages may be superimposed on 0 V and +24 V lines as no reference to ground exists. See Warning 1.2.14

1. Turn the meter to the HIGH VAC range.
2. Meter between 0 V and Neutral. (Should be 0V)
3. Meter between 0 V and L 2 A (if applicable). (Should be 0 V)
4. Meter between +24 V and Neutral. (Should be 0V)
5. Meter between 0 V and +24 V . (Should be 24 Vdc)

If 24 Vdc is low or unstable, check large capacitor C69 on PCB. This capacitor may have been hit or knocked, which can break off one of the legs soldered into the PCB. A gentle twist will reveal if one leg has broken. If so, replace the capacitor

Doors do not open

Check door disable switch DDO on PCB is off
See Inputs-Outputs, DDO

Doors close on park

If the doors close when keyed to park after EDP is opened you may require a software update. Upgrade to latest Version software.

Doors don't open at terminal floors

Ensure the MSU slowing input is activated before the Top Slowing Limit (TSL) at the top floor Ensure the MSD slowing input is activated before the Bottom Slowing Limit (BSL) at the bottom floor.

Lift gets out of step

If the lift gets out of step check the following.
1.MSU and MSD magnets must be within DZ (DoorZone) at floor level.
2. If lift resets incorrectly at top floor check TOP EEprom setting.

Lift does not answer car calls

Check CCM, CC1 setting.

Lift does not answer hall calls

Check UCM, UC1, DCM, DC1 setting.

Lift misses hall calls

If the lift misses only some hall calls but answers car calls whilst on normal operation

1. Ensure SIS unit is mounted firmly.
2. Some magnets may have dead spots. Change faulty magnets.
3. Ensure software is latest Version.
4. On terminal floors - ensure that MSU/MSD initiates slowing before TSL/BSL respectively.

Re-leveling won't operate

Check RLV setting.

Red3 LED is not blinking

The microprocessor has locked up (possibility caused by electrical noise interference, power failure). Reset via a processor power on reset (POR);

- Turn the power supply off
- Wait for 10 s
- Turn the power supply back on
- Observe LEDs status.

Under normal operation;

- The red Red3 LED blinks to confirm that the microprocessor is running.
- The yellow Yel3 LED comes on to confirm outputs are enabled.
- The green Grn3 LED comes on during power up and turns off during normal operation. It will also flash once when a new value has been written in to EEPROM..

When re-powering; ensure the lift is off for 10 seconds before turning back on.
On power up, a delay of approximately 2 seconds is given on start up to ensure voltages are stable prior to reading and writing outputs.

Processor errors/Lockup:

Ensure 0 V and 10 V AC supply present at board terminal
Try new microprocessor IC.
35 V 470 uF capacitor damaged.
Crystal damaged.
Lockup may be due to spike/noise. All relays, valves, brakes, door motors etc must be suppressed with an appropriate filter or surge absorber unit to prevent voltage spikes and back emf/noise.

Section 8. Upgrades, Changes \& Technical Information

Upgrades, changes and modifications

When contacting us please have the board's part number (printed in white on PCB), software version and software build date (see Section 5).

Terminal Screw Torque Settings.

TIGHTENING TORQUES FOR 3 POLE CONTACTORS

TYPE	CONTACTOR TERMINAL SCREW SIZE	TORQUE $(\mathbf{N m})$	TORQUE (Ft-lbs)
GMC-9	M4	2.3	1.7
GMC-12	M4	2.3	1.7
GMC-18	M4	4.0	3.0
GMC-22	M4	4.0	3.0
GMC-32	M5	4.0	3.0
GMC-40	M5	4.0	3.0
GMC-50	M6	5.0	3.7
GMC-65	M8	5.0	3.7
GMC-75	M8	5.0	3.7
GMC-85	M8	5.0	3.7
GMC-100	M8	9.0	6.6

TIGHTENING TORQUES FOR THERMAL OVERLOADS

TYPE	TERMINAL SCREW SIZE	TORQUE (Nm)	TORQUE (Ft-lbs)
GTK-22	M4	2.3	1.7
GTK-40	M4	4.0	3.0
GTK-85 (28-40A)	M6-M8	5.1	3.8

TIGHTENING TORQUES FOR MODULAR SCREW TERMINALS

TYPE	TERMINAL SCREW SIZE	TORQUE (Nm)	TORQUE (Ft-lbs)
2.5 mm	M2.5	$0.4-0.6$	$0.30-0.44$
4.0 mm	M3	$0.5-0.7$	$0.37-0.52$
10.0 mm	M5	$2.0-2.5$	$1.48-1.84$
16.0 mm	M6	$2.5-3.0$	$1.84-2.21$
35.0 mm	M8	$6.0-10.0$	$4.00-7.38$
75.0 mm	M8	$6.0-10.0$	$4.00-7.38$

Operation Guide

© Electronic Circuit Designs Pty. Ltd.
Factory 11/30 Perry Street • Matraville • NSW • Australia • 2036
Phone 61293166909 • Fax 61293166797
Email sales@ecd.com.au Web www.ecd.com.au

